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While a significant amount of galaxies have been discovered until today, it has also
been a great challenge to observe and analyse every single one of them to the fullest.
As a matter of fact, there are only few neighboring galaxies optimal for observation.
The Centaurus A galaxy is the reference galaxy used for this thesis, since it is one of
the closer and well-observed galaxies.
Cen A is surrounded by a plane of satellite galaxies. While observing and calculating
the velocity of these, a certain coherent pattern of movement can be recorded. The
plane seems to be rotating around the host-galaxy.
This peculiar behavior has been set to test by using the Λ− CDM model to simulate,
in this case 180, galaxies.
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Chapter 2

Physical and mathematical basis

2.1 The observed Galaxy, Centaurus A

Centaurus A, a giant elliptical radio galaxy, served as a reference for this project. In
the centre of Cen A, there is a very compact but active core and it also possesses a
rather visible disk of dust.[1]

2.1.1 Elliptical Galaxies

Astronomer Edwin Hubble divided every galaxy in the Universe into four cate-
gories: elliptical galaxies, spiral galaxies, irregular galaxies, and S0 galaxies.[2]

spiral galaxies look like what their name suggests. The disk of dusk has the
shape of a spiral. Depending on certain properties, such as their brightness, these
galaxies are subdivided into many other categories.

On the other hand, irregular galaxies don’t have a recognizable shape. More-
over, they are also divided into at least two subgroups, since some have weak shapes
and some don’t take any shapes at all.

s0 galaxies, also called lentil-shaped galaxies, lie between elliptical and spiral
galaxies. Their name is derived from their shape since they have a bump in their
centre but around the edge, their shape fades, making them resemble lentils.

However, Cen A is an elliptical galaxy, which is the most common galaxy group
in the Universe. In addition, this group has many sub-groups based on the ellipticity
they possess. ′ε = 1− b

a
′
[2] In general, elliptical galaxies are very massive and bright,

with Cen A having a mass of 1 billion suns and a diameter of 60.000 light-years.
Additionally, it has a brightness of around 6.6 mags. Moreover, Centaurus A has an
active core emitting radio waves, thereby making it a radio galaxy.

Radio galaxies

The galaxies considered radio galaxies are all elliptical and are like Centaurus A in
having an active core. Cygnus A is another example of a radio galaxy.[2] The galaxies
in this group are divided by their radio emission, according to whether it is broad-
line or narrow-line, providing insight into the properties of the gas and the activity
of the galaxy. Cen A is a galaxy with a broad-line emission. Cen A is, therefore, a
powerful source of radio, while its emission remains non-thermal synchrotron radi-
ation. It has a radio luminosity of roughly 1033− 1038 W, nearly as much as a regular
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FIGURE 2.1: ’Hubble’s ‘tuning fork’ for galaxy classification.
Adapted from: J. Kormendy |& R. Bender 1996, A Proposed Revi-
sion of the Hubble Sequence for Elliptical Galaxies, ApJ 464, L119,

Fig. 1.c AAS. Reproduced with permission’[2]

galaxy.

The main challenge is to discover an explanation for this radio emission. To be
able to explain, we must understand the emergence of electrons and the magnetic
field. Most importantly, there is a question around where these electrons gather the
required energy.

A radio galaxy is characterized by two major radio emitting regions on the op-
posite side of the galaxy. (fig: 2.2) By looking at such a galaxy, you also recognize
a fine line of the jet. This is the said radio emission line. The jet emitted by Cen A
can be seen up to the edge of the galaxy. There is no other radio galaxy closer to
Milkyway than Cen A.

FIGURE 2.2: An illustration of Centaurus A[3]

However, in this study, we will make use of the size, position and velocity of 28
of Centaurus A’s satellite galaxies. We compare the flatness and movement of the
said satellite galaxies to that of the simulated one. This will be discussed in detail in
Chapter 3.



2.2. ΛCDM Model and TNG-Project 5

2.2 ΛCDM Model and TNG-Project

Simulated galaxies are the core tool for this project. In this thesis, we measured the
flatness of 180 systems, the positions of satellite galaxies and their velocities. We rely
on data from the TNG-Project, which utilizes the standard model of cosmology in
its simulations.[4]

2.2.1 The standard model of cosmology

The standard model of cosmology, also called the Λ -CDM model, is an attempt to
explain the universe and its existence based on dark energy, the cosmological con-
stant and cold dark matter.

the main statement of the model is about the density of mass energy and how it is
dominated by the density of dark matter and dark energy, both being very unknown
components. Galaxies don’t always behave according to our current understanding
of physical theories about gravity, so there are only hints that they exist. There-
fore, a possible explanation is that the galaxy contains an unidentified mass, which
cannot interact with light. The distribution of this mass is known as the ’cosmic
web’.(fig: 2.3)

A Cosmic web is like a fabric that encloses our universe. There are fibres, knots,
and holes in every fabric. It is the same with the cosmic web. Dark matter is dis-
tributed in fibres, that come together in certain spots to build a knot or ’halo’. Galax-
ies, in other words, visible matter, tends to take shape around those halos.

Therefore, TNG simulations first build a cosmic web and then let the galaxies
simulate on top of this basis. Because of these simulations and their accuracy in
replicating the galaxies in most cases, Λ CDM is considered as standard model of
cosmology, however there are still some cases, like the one discussed in this thesis,
where there are some incongruities.

FIGURE 2.3: an Illustration of a simulated cosmic web [5]
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2.2.2 TNG-Project

’The IllustrisTNG project’ is a variety of simulations of galaxies. The model is based
on the standard model of cosmology.
A total of 18 simulations are included in the project. Each has its advantages. They
differ in size, resolution, and complexity. There are three main simulations, the TNG-
50, TNG-100 and TNG-300, with their primary difference being their size. It’s impor-
tant to know the advantages of each simulation before deciding which to use since
their use cases differ widely.

For instance, TNG-50 has a size of 50 Mpc. An advantage of a smaller simulation
is its significantly higher resolution. However, the smaller size creates the disadvan-
tage of the scarcity of rare objects or host galaxies, which are very important for our
project.

In contrast, TNG-300 has a lot more detail, more rare objects, and more samples,
while lacking the high resolution of TNG-50.

Therefore, for our purposes of using simulations, thus counting satellite galax-
ies, TNG-100 would be the most beneficial. There is enough detail for a reasonable
number of galaxy hosts as well as a decent enough resolution for the required preci-
sion.

Each three groups of TNG-simulations have further properties to customize the
simulation for the user. for example each has three levels of resolution and each
nine simulation has its ’dark matter only’ and ’baryonic physics’, making an over-
all amount of 18 different simulations. However, these properties are not used for
this thesis. The table below shows a more detailed information on each simulation
group.

FIGURE 2.4: more detail and information regarding every simulation.
[4]
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2.3 Creating a random System

The Data used is compared with randomly generated systems to ensure its plausibil-
ity. Therefore, we need a galaxy host and enough satellite galaxies. We use simulated
systems and reposition the satellites randomly to make the process fail-proof.

The first step is to place the host in the centre of the coordinate system. This gives
us the satellites’ position in relation to the host, and we can now reposition them
randomly in a sphere. The radius of the sphere represents the distance between the
satellite and the host. To reposition the satellite, we first create three components:

φ ∈ [0, 2π)

cos(θ) ∈ [−1, 1)

r =
√

x2
pos + y2

pos + z2
pos

(2.1)

the angle φ and cos(θ) are created randomly, while r is the radius of the sphere.
these components are spherical coordinates which we now transfer back into Carte-
sian, using:

x = r · sin(θ) · cos(φ)
y = r · sin(θ) · sin(φ)
z = r · cos(θ)

(2.2)

In addition to randomizing the positions, we also randomly redirect the move-
ment of the same satellite galaxy without altering its velocity, analogous to the dis-
tance.

2.4 Tensor of Inertia

The moment of inertia of a rotating rigid body is the most relevant physical prop-
erty.[6] Despite the fact that technically a galaxy is not a rigid body, but rather a
rotating system, in order to determine how flat a simulated galaxy is, we need to
understand the moment of inertia or the Tensor of inertia.

2.4.1 The moment of inertia

Rotating rigid bodies have only one degree of freedom. it rotates around one axis
with the rotating angle φ. To calculate the Equation of Motion, we need the law
of conservation of energy, angular momentum, and the centre of mass. In physics,
the moment of inertia is the fundamental quantity that forms all of these equations,
which you can calculate as follows: [7][6]:

It is assumed that the forces acting on the body or in our case, the galaxy, from
the outside are conservative. Therefore, we know there is a potential and the con-
versation of energy applies. A rigid body’s kinetic energy thus becomes our focus.

T = ∑
i

mi

2
ṙ2

i (2.3)
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The mass point in the body is mi, and the position of that mass point is /textb f [r]i.
We now need to define ri and to do so we look at the angular speed of the rotating
body. The rotation axis doesn’t move, so we can set the z-axis of the coordinate
system so, that

ω = (0, 0, ω) (2.4)

The angular speed is /omega in this case, and with that we can calculate ri, since

ṙi = (ω× ri) = ω(−yi, xi, 0) (2.5)

As a result, we can re-state the kinetic energy as follows:

T =
1
2 ∑

i
mi(x2

i + y2
i )ω

2 (2.6)

This allowed us to define the moment of inertia as

J = ∑
i

mi(x2
i + y2

i ) (2.7)

2.4.2 The tensor of inertia

Moment of inertia can only be calculated for rotations around a fixed axis. Things
become more complicated if the direction of the axis changes over time.[6]

n(t) =
ω(t)
ω(t)

(2.8)

In order to solve this problem, we need to define the tensor of inertia. In order to
do that, we need to explore the general motion of a rigid body.

The motion is divided into two parts,

• 1. Translation, for that we select one particular point S and define the translat-
ing motion of the body through that point

• 2. Rotation, Although the rotation axis changes direction, it always passes
through the same point S.

We must first establish two Inertial frame of references in order to arrive at a
formula stating both motions.

• ∑
′
: the first one has the origin of its coordinate-system somewhere in the room.

~0 is always fixed at the same point.

• ∑: the second ones origin is in S.(fig: 2.5)

looking at both systems, it is clear that

r
′
(t) = r0(t) + ri(t) (2.9)

now we look again at the kinetic energy (eq. 2.3). to calculate the term we need
to calculate the velocities. According to [6]
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e3 

S 
0 

e 

FIGURE 2.5: [6]

ṙi = (ω× ri)

ṙ
′
i = ṙ0 + (ω× ri)

(2.10)

putting eq. 2.10 into eq. 2.3 givs us

T =
1
2 ∑

i
mi ṙ2

0 +
1
2 ∑

i
mi(ω× ri)

2 + ∑
i

mi(ω× ri) · ṙ0 (2.11)

there are 2 plausible cases to discuss now.

• 1. the body is fixed at one particular point in space. S is the best choice for this.
Therefore, r0 = 0, ṙ0 = 0

• 2. the body is not fixed, so we choose S to be the center of mass of the body.
Therefore, ∑i miri = 0

in both cases the third term in eq. 2.11 is equal to zero. Thus, reaching our goal.

T =
1
2 ∑

i
mi ṙ2

0 +
1
2 ∑

i
mi(ω× ri)

2 = TT + TR (2.12)

we now have an equation describing the energy, divided into two parts. Translation
TT and Rotation TR. With that and with

(ω× ri)
2 = ω2r2

i − (ω · r)2 = (ω2
1 +ω2

2 +ω2
3)(x2

1 + x2
2 + x2

3)− (ω1xi1 +ω2xi2 +ω3xi3)
2

(2.13)
which helps us defining the tensor of inertia as

Jlm = ∑
i

mi(r2
i δlm − xilxim); l, m = 1, 2, 3 (2.14)

by calculating the eigen-vectors and eigen-value of the tensor, we can determine the
flatness of the galaxies. the calculations for that are described in chapter 3.
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2.5 Tip of the red-giant branch

TRGB is a method used to assess distances in astrophysics. It uses the luminosity of
a star, that reached the red-giant branch stage. The stellar evolution stage provides
us with the information we need to determine our distance from the galaxy.[8]

for this project, the distances were already provided and there were no calcula-
tions necessary. However, they were calculated using this method and it is important
to note, that the calculations come with an uncertainty of estimated 5%.
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Chapter 3

Data and methods

This chapter discusses every data used and every step taken to get the results, begin-
ning with the data used for the reference galaxy Centaurus A [9]. We then continue
to look at the methods used to calculate the results step by step. This chapter is in
the same order as the written Python-Code and describes how the code is written.

3.1 Centaurus A

Galaxy group Centaurus A is the largest collection of galaxies next to our galaxy, the
Milky Way. It is within a distance of 10 Mpc. The largest galaxy inside this group
is Centaurus A. for this project we focus on the galaxies bound to Cen A by gravity.
Those satellite galaxies are collected in a plane of galaxies with a small-scale RMS
(root-mean-square) thickness of 69 kpc and a major axis RMS length of 309 kpc. [9]

Observing the Centaurus A galaxy from earth, the plane of galaxy appears to be
in an inclined position of 14.6◦. The distances of most of the satellite galaxies have
been calculated, using the tip of the red giant branch method, discussed in chapter
2. Overall we include 28 satellite galaxies of Cen A in our project.

Therefore, every simulated galaxy should also have around 28 satellite galaxies
for a plausible comparison. In addition, they also are required to have a combined
mass of 4 to 12×1012 M�. Each galaxy has one single host isolated inside of a radius
of 1.2 Mpc, which is the distance of Centaurus A to the next biggest Galaxy, M83, in
the Centaurus A Group. Any galaxy with a mass of 0.5 ×1012 M� can be considered
as a co-host and should be outside of the said sphere. Since the observed satellite
plane is within a radius of 800 kpc, we also consider every galaxy in that range as a
satellite galaxy of the host. [10]

The most important Data for our project however, are the flatness of the galaxy
b/a = 0.52 and "the number Ncorr = 21 of satellite galaxies with coherent line-of-
sight velocities along the major axis dividing the on-sky satellite distribution along
the minor axis." [10]

We are looking for simulated galaxies being as flat or flatter than 0.52 and have a
higher Ncorr than 21.

3.2 Preprocessing the simulation files

The simulation files are from the TNG-project which are discussed in Chapter 2 [4].
The Data for every simulated System is given in a .csv file. They provide us with a
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large amount of information. The most important ones for our project is the posi-
tions of the galaxies and their velocities.

First, we need to know which galaxy is the host-galaxy by looking for the re-
quired properties as described above. We need the position of every satellite galaxy
relative to the host. Therefore, we reposition the origin of the coordinate system to
where the host is. Then we randomly rotate every system as often as required. After
every rotation we save the x, y and z coordinates of the position, then the velocity of
each satellite galaxy and then the ones of the host galaxy. The original positioning
of the system without any rotation is also saved in its own file.

We now have the information on the host properties, and the n+1 files, describing
the positions and direction of every galaxy from another point of view. n in this case
is the number of rotation applied.

3.3 Calculating the desired values

now we look at every file in isolation. The goal is to calculate the flatness of the
Galaxy the Ncorr from that point of view.

For that we first want to look at our System and compare it to the reference
galaxy, Centaurus A. The properties of the host galaxy have to be as described in
chapter 3.1. However, we need also to make sure, there are enough satellite galaxies
in the simulation and all of them are inside the same radius as the ones of Cen A.

3.3.1 flatness

After making sure that the simulation matches the requirements, we project the po-
sitions on a two dimensional image of the galaxy from the specific point of view.
For that, we first calculate two different angles. First one called ξ (xi) is the angle
between the position of Cen A and the position of the satellite projected on the x-z
level, while η (eta) is the angle between Cen A and the position projected on the y-z
level. These two angles are the x and y components of the vector used to create a
tensor of inertia.

Tensor of inertia

We already discussed the mathematical theory behind Tensor of inertia in chapter
2. now we have a list of two dimensional vectors. Each belong to another satellite
galaxy. using this list and the formula [11]

T =

xi
yi
zi

2

·

1 0 0
0 1 0
0 0 1

−
xi

yi
zi

 · (xi yi zi
)

(3.1)

afterwards, we calculate the eigenvectors and eigenvalues of the Tensor. The pro-
jected long axis is the eigenvector belonging to the smallest eigenvalue, vS. After-
wards, we want to determine the direction this vector is showing towards, if pro-
jected onto the x-y level. We name this rotation angle, α
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α = tan−2
(

vS,1

vS,2

)
(3.2)

the new position of each satellite is calculated by

xnew =

xold,1 · cos(α)− xold,2 · sin(α)
xold,1 · sin(α) + xold,2 · cos(α)

0

 (3.3)

the first component of the vector xnew is perpendicular and the second one parallel
to the major axis direction. We calculate the root-mean-square (RMS) of each. The
ratio of these two values is the flatness we are looking for.

b/a =
RMSper

RMSpar
(3.4)

3D Tensor of inertia

for the three dimensional flattening things are a little different. First, we use a list
of the positions of the satellites. Then, we calculate the Tensor of inertia just as de-
scribed in 3.1 and again determine their eigenvector and eigenvalues and with that
the largest and smallest eigenvalues. From now on we use the eigenvectors belong-
ing to the largest eigenvalue, vL and the one belonging to the smallest, vS.

What we do next is called Scalar projection. We project every satellite onto vL
and vS,

s = ||xsat||cos(θ) = xsat · v
′
i (3.5)

with xsat being the position of each satellite, and v
′
i being the unite vector showing

in the same direction as the eigenvectors. To simplify the calculation we use

cos(θ) =
xsat · vi

||xsat|| ||vi||
(3.6)

and with that we get

s =
xsat · vi

||vi||
(3.7)

now having a list of projected scalars, we calculated their root-mean-square (RMS),
leaving us with two values. the RMS along the direction of vL and the one along the
direction of vS. the ratio of these two values is the three dimensional flatness we are
looking for.

c/a =
RMSL

RMSS
(3.8)
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3.3.2 Movement around the host

After calculating the flatness of the galaxy we use the determined long axis vector to
determine Ncorr. We want to look at every single satellite galaxy and analyse them
as following

countvel = 0
for j in range(len(positions)):

angle = angleBetween(positions[j], Long_vec) / numpy.pi * 180.0
if angle < 90.0:

if velLosList[satindexlist[j]] > 0.0:
countvel = countvel + 1

else:
countvel = countvel - 1

else:
if velLosList[satindexlist[j]] > 0.0:

countvel = countvel - 1
else:

countvel = countvel + 1
countvel = (Nsat + abs(countvel)) // 2.0

First, the loop has the range of the number of satellites. For each satellite in the
loop we calculate the angle between said satellite (positions[j]) and the long major
axis (Long_vec) calculated with the help of the tensor of inertia.

if the angle is smaller than 90◦ then it means, that the satellite is on one side of
the small major axis and if it is larger than 90◦, it is on the other side. Since we are
looking for a rotation around the host, the satellite galaxies on one side of the galaxy
have to move in the same direction, while the ones on the other side move in the
opposite direction.

Therefore, we look at the velocity of the satellite galaxy in relation to the observed
galaxy.

vlos =
vsat · (xsat + xCenA)

||xsat + xCenA||
(3.9)

The calculated velocities are gathered in the list called, velLosList. If the velocity
under 90◦ is positive we add one count to ’countvel’, if it is negative we subtract
one count. If the velocity over 90◦ is negative we add one count to ’countvel’, if it
is positive we subtract one count. At the end we add the count with the amount of
satellite galaxies and divide by two.

Example

To make this more clear, we use an example. We assume a total amount of 20 satellite
galaxies. 13 of them are from our point of view above the small major axis and 7
underneath it. out of the 13, 8 move away from us and 5 towards us. so if we add 1
to the count for every galaxy moving away from us and then subtract every galaxy
that moves towards us, we then have a total count of 3.

now we look underneath the axis and out of 7 galaxies, 5 move towards us, the
opposite direction of the ones above. so the count would be 5 - 2 = 3. over all we
have a count of 6.
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adding these 6 to the total number of galaxies, we have 26, which divided by 2 is
13. Therefore, Ncorr = 13

Basically, we have 8 galaxies above moving away and 5 below moving towards
us making a total of 13 galaxies rotating the host. The calculation chosen here, is
designed to avoid mistaken counts.

3.4 plotting the results

After calculating the 2 values we are looking for, we want to illustrate our results.
for that we first simply plot every calculated b/a in relation to its Ncorr from the same
point of view.
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fboth = 0.1% fCorr = 3.3%

fflat = 5.6%

FIGURE 3.1: Example plot of all calculated values for flatness on the
x-axis and Ncorr on the y-axis. We used 180 simulations and a certain

number of rotations to change the POV

the systems in the green area are the ones we are looking for. the point of views
in this area are showing a system as flat or flatter with a Ncorr as big or bigger than
Centaurus A.

After that we check the distribution of the flatness and Ncorr illustrated in a his-
togram.
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(B) Distribution of the flatness

FIGURE 3.2: Example plot of all calculated values. x-axis shows the
calculated flatness or Ncorr, while the y-axis shows from how many

points of view we get the same value
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Afterwards, we look at one simulation at a time. every system has been rotated
and looked at for a particular amount of times that we call n. Thus, we have n
number of values for flatness and Ncorr. We now want to find the minimum flatness
and maximum Ncorr. After doing so with

mindFlattening = flatteningList[i][0]
sumFlat = 0.0
for j in range(len(flatteningList[i])):

sumFlat = sumFlat + flatteningList[i][j]
if flatteningList[i][j] <= mindFlattening:

mindFlattening = flatteningList[i][j]
mindFID = SysIDnameList[i][j]
mindFcoorbit = coorbitList[i][j]

for minimum flatness and analogue to this code for maximum Ncorr, we plot the
results.
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FIGURE 3.3: Example plot of all the minimum and maximum for ev-
ery simulation. It is important to note, that the flatness and Ncorr are
from the same system but not the same point of view. Therefore, there

are 180 results illustrated in this plot.

Here, we again want to look at the distribution of the flatness and Ncorr this time
their minimum and maximum
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(B) Distribution of the flatness

FIGURE 3.4: Example plot of the distribution of minimum flatness
and maximum Ncorr



3.4. plotting the results 17

Now we want to find the one point of view from which the simulated host galaxy
is the closest to Centaurus A. For that we calculate the ratio of Ncorr and the flatness
from each POV and then pick the highest. with that we make sure to have the highest
possible Ncorr and the lowest possible flatness from the same perspective. We again
plot the result as above.
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FIGURE 3.5: Example plot of the highest possible Ncorr and lowest
possible flatness from the same POV for each simulation.

we want to look at the distribution of the optimal Ncorr and flatness as well.

14 16 18 20 22 24 26 28
Ncorr

0

5

10

15

20

25

30

Co
un

t

(A) Distribution of Ncorr

0.0 0.2 0.4 0.6 0.8 1.0
flattening

0

5

10

15

20

Co
un

t

(B) Distribution of the flatness

FIGURE 3.6: Example plot of the distribution of minimum flatness
and maximum Ncorr

At the end we also calculate the average value of every calculated flatness and
Ncorr by

Mean =
1

(nRotation · nSimulations)
∑

i
fi or Ncorr,i (3.10)

and plot their distribution.
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FIGURE 3.7: Example plot of the distribution of the average values of
flatness and maximum Ncorr for each simulated system

we repeat this procedure, only after calculating the standard deviation of all the
values for each simulation using the numpy function

sd = numpy.std(List)

and then plot the result
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FIGURE 3.8: Example plot of the distribution of the standard devia-
tion of every value for each simulated system

finally, we plot the calculated two dimensional flatness b/a together with the
three dimensional flatness c/a calculated as described above in Chapter 3.3.1.

we then repeat everything described in this chapter for all 180 Simulations with
10, 100, 1000 and 10000 rotations.
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FIGURE 3.9: Example plot of 2D flatness on the x-axis and the 3D
flatness on the y-axis

3.4.1 random system

We create as described in Chapter 2.3 a random System and repeat every step for
this system as well. We only use 100 rotations for the randomly created system. The
goal of this practise is to make sure our results are not randomly generated as the
results for this system will be.
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Chapter 4

Results

In this chapter we show every Plot produced as described in the previous chapter.
Every plot is shown in the following order, first the results for the 180 randomly
created Systems then the 180 Simulations rotated 10, 100, 1000 and 10000 times.

4.1 Every calculated Value

First we show every calculated value for Ncorr over every calculated value for flat-
ness from the same POV. The x-axis shows b/a, while the y-axis shows Ncorr. The
upper left corner shows how many of the snapshots show a system as flat or flatter
as Cen A and with an Ncorr as high or higher than Cen A, while the lower left corner
shows the snapshots flat or flatter than Cen A and the upper right corner shows the
amount of the snapshots having a minimum Ncorr of 21.
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FIGURE 4.1: Every result calculated for the 180 randomly created sys-
tems with 100 rotations. both results were from the same POV
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10 rotations
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FIGURE 4.2: Every result calculated for the 180 simulations with 10
rotations. both results were from the same POV

100 rotations
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FIGURE 4.3: Every result calculated for the 180 simulations with 100
rotations. both results were from the same POV
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1000 rotations
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FIGURE 4.4: Every result calculated for the 180 simulations with 1000
rotations. both results were from the same POV

10000 rotations

FIGURE 4.5: Every result calculated for the 180 simulations with
10000 rotations. both results were from the same POV



24 Chapter 4. Results

4.2 Distribution of all the calculated values

The following plots are the number of snapshots distributed over the calculated val-
ues.
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FIGURE 4.6: Histogram of the distribution of the calculated values of
the 180 randomly created systems rotated 100 times
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FIGURE 4.7: Histogram of the distribution of the calculated values of
the 180 simulated systems rotated 10 times
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100 rotations
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FIGURE 4.8: Histogram of the distribution of the calculated values of
the 180 simulated systems rotated 100 times
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FIGURE 4.9: Histogram of the distribution of the calculated values of
the 180 simulated systems rotated 1000 times
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10000 rotations
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(B) Distribution of the flatness

FIGURE 4.10: Histogram of the distribution of the calculated values
of the 180 simulated systems rotated 10000 times

4.3 average value

the following plots are the average value of all the calculated values for each of the
180 systems.

random system

14 16 18 20 22 24 26 28
Ncorr

0

20

40

60

80

Co
un

t

(A) Distribution of Ncorr

0.0 0.2 0.4 0.6 0.8 1.0
flattening

0

5

10

15

20

25

30

35

Co
un

t

(B) Distribution of the flatness

FIGURE 4.11: Histogram of the distribution of the calculated average
of the 180 randomly created systems rotated 100 times
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10 rotations
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FIGURE 4.12: Histogram of the distribution of the calculated average
of the 180 simulated created systems rotated 10 times
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14 16 18 20 22 24 26 28
Ncorr

0

20

40

60

80

Co
un

t

(A) Distribution of Ncorr

0.0 0.2 0.4 0.6 0.8 1.0
flattening

0

5

10

15

20

25

30

Co
un

t

(B) Distribution of the flatness

FIGURE 4.13: Histogram of the distribution of the calculated average
of the 180 simulated created systems rotated 100 times
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1000 rotations
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FIGURE 4.14: Histogram of the distribution of the calculated average
of the 180 simulated created systems rotated 1000 times
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FIGURE 4.15: Histogram of the distribution of the calculated average
of the 180 simulated created systems rotated 10000 times
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4.4 standard deviation

After we calculate the standard deviation of the values for every system we plot the
distribution just as before.

random system

0 2 4 6 8
Ncorr

0

20

40

60

80

100

120

140

Co
un

t

(A) Distribution of Ncorr

0.00 0.05 0.10 0.15 0.20 0.25
flattening

0

20

40

60

80

Co
un

t

(B) Distribution of the flatness

FIGURE 4.16: Histogram of the distribution of the calculated standard
deviation of the 180 randomly created systems rotated 100 times
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FIGURE 4.17: Histogram of the distribution of the calculated standard
deviation of the 180 simulated systems rotated 10 times
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100 rotations
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(B) Distribution of the flatness

FIGURE 4.18: Histogram of the distribution of the calculated standard
deviation of the 180 simulated systems rotated 100 times
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(B) Distribution of the flatness

FIGURE 4.19: Histogram of the distribution of the calculated standard
deviation of the 180 simulated systems rotated 1000 times
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10000 rotations
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(B) Distribution of the flatness

FIGURE 4.20: Histogram of the distribution of the calculated standard
deviation of the 180 simulated systems rotated 10000 times

4.5 plotting the extremes

for every system we found the minimum flatness and the maximum Ncorr and plot
the 180 values like described in Chapter 3. the values however, are not from the
same point of view.
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FIGURE 4.21: calculated extremes for the 180 randomly created sys-
tems with 100 rotations. the results are not from the same POV
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10 rotations
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FIGURE 4.22: calculated extremes for the 180 simulated systems with
10 rotations. the results are not from the same POV

100 rotations

0.0 0.2 0.4 0.6 0.8 1.0
b/a

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

N c
or

r

fboth = 18.9% fCorr = 61.7%

fflat = 31.7%

FIGURE 4.23: calculated extremes for the 180 simulated systems with
100 rotations. the results are not from the same POV
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FIGURE 4.24: calculated extremes for the 180 simulated systems with
1000 rotations. the results are not from the same POV
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FIGURE 4.25: calculated extremes for the 180 simulated systems with
10000 rotations. the results are not from the same POV
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4.6 Distribution of the extremes

Now we look at how the extremes for flatness and Ncorr is distributed over all sys-
tems and rotations.
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FIGURE 4.26: Histogram of the distribution of the minimum flatness
and maximum Ncorr of the 180 randomly created systems rotated 100
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FIGURE 4.27: Histogram of the distribution of the minimum flatness
and maximum Ncorr of the 180 simulated systems rotated 10 times
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FIGURE 4.28: Histogram of the distribution of the minimum flatness
and maximum Ncorr of the 180 simulated systems rotated 100 times
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FIGURE 4.29: Histogram of the distribution of the minimum flatness
and maximum Ncorr of the 180 simulated systems rotated 1000 times
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10000 rotations
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FIGURE 4.30: Histogram of the distribution of the minimum flatness
and maximum Ncorr of the 180 simulated systems rotated 10000 times

4.7 optimal pairing

The following plots all show the 180 most optimal pairing of Ncorr and flatness from
the same point of view. the determination of these pairs is explained in Chapter 3.
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FIGURE 4.31: calculated optimal pairs for the 180 randomly created
systems with 100 rotations.
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FIGURE 4.32: calculated optimal pairs for the 180 simulated systems
with 10 rotations.
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FIGURE 4.33: calculated optimal pairs for the 180 simulated systems
with 100 rotations.
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1000 rotations
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FIGURE 4.34: calculated optimal pairs for the 180 simulated systems
with 1000 rotations.
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FIGURE 4.35: calculated optimal pairs for the 180 simulated systems
with 10000 rotations.
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4.8 Distribution of the optimal pairing

Now we look how the values of the optimal pairing is distributed.
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FIGURE 4.36: Histogram of the distribution of the optimal flatness
and maximum Ncorr of the 180 randomly created systems rotated 100

times
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FIGURE 4.37: Histogram of the distribution of the optimal flatness
and maximum Ncorr of the 180 simulated systems rotated 10 times
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100 rotations
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FIGURE 4.38: Histogram of the distribution of the optimal flatness
and maximum Ncorr of the 180 simulated systems rotated 100 times
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FIGURE 4.39: Histogram of the distribution of the optimal flatness
and maximum Ncorr of the 180 simulated systems rotated 1000 times
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10000 rotations
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FIGURE 4.40: Histogram of the distribution of the optimal flatness
and maximum Ncorr of the 180 simulated systems rotated 10000 times

4.9 3D flatness to 2D flatness

The following plots all show the calculated 3D flatness over 2D flatness. the values
are the ones of the same system, therefore giving us a total of 180 values.
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FIGURE 4.41: calculated 3D flatness over 2D flatness for the 180 ran-
domly created systems with 100 rotations
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FIGURE 4.42: calculated 3D flatness over 2D flatness for the 180 sim-
ulated systems with 10 rotations
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FIGURE 4.43: calculated 3D flatness over 2D flatness for the 180 sim-
ulated systems with 100 rotations
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FIGURE 4.44: calculated 3D flatness over 2D flatness for the 180 sim-
ulated systems with 1000 rotations
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FIGURE 4.45: calculated 3D flatness over 2D flatness for the 180 sim-
ulated systems with 10000 rotations
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Chapter 5

Evaluation

We evaluate the results in the same order as we executed the project. We start with
the initiate idea of this thesis, what is the influence of the rotations on the results and
what happens if we . From there, we came up with new ideas to understand our
results better.

5.1 the initiate influence of the rotations

executing the python code for only 10 rotations, we receive the plot 4.2. This Plot is a
first good result, since it shows a similar result to the references used for this thesis.
[9] [10] [12]

0.1% of the snapshots, which means the results of the 180 systems from the dif-
ferent point of views, match the data from Cen A.

The flatness of the galaxies is always between 0.3 and 1. Looking at 4.7, you can
see how the galaxies are distributed. most of them are somewhere between 0.6 and
0.8 with around 140 of the 1800 snapshots being around 0.75.
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Chapter 6

Summary and Outlook

In this Chapter...
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