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ABSTRACT

HIGH RESOLUTION SOLAR OBSERVATIONS
FROM FIRST PRINCIPLES TO APPLICATIONS

by
Angelo P. Verdoni

The expression "high-resolution observations" in Solar Physics refers to the spatial,

temporal and spectral domains in their entirety. High-resolution observations of solar

fine structure are a necessity to answer many of the intriguing questions related to

solar activity. However, a researcher building instruments for high-resolution obser-

vations has to cope with the fact that these three domains often have diametrically

opposed boundary conditions. Many factors have to be considered in the design

of a successful instrument. Modern post-focus instruments are more closely linked

with the solar telescopes that they serve than in past. In principle, the quest for

high-resolution observations already starts with the selection of the observatory site.

The site survey of the Advanced Technology Solar Telescope (ATST) under

the stewardship of the National Solar Observatory (NSO) has identified Big Bear

Solar Observatory (BBSO) as one of the best sites for solar observations. In a

first step, the seeing characteristics at BBSO based on the data collected for the

ATST site survey are described. The analysis will aid in the scheduling of high-

resolution observations at BBSO as well as provide useful information concerning the

design and implementation of a thermal control system for the New Solar Telescope

(NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m

aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome.

With optics exposed to the surrounding air, NST's open-structure design makes

it particularly vulnerable to the effects of enclosure-related seeing. In an effort to

mitigate these effects, the initial design of a thermal control system for the NST dome



is presented. The goal is to remediate thermal related seeing effects present within

the dome interior. The THermal Control System (THCS) is an essential component

for the open-telescope design of NST to work. Following these tasks, a calibration

routine for the polarization optics for the Visible-light Imaging Magnetograph (VIM)

is presented. VIM uses a set of two Liquid Crystal Variable Retarders (LCVRs) as the

main components of its Stokes analyzer. Calibration of these components is a crucial

step in providing reliable polarimetric measurements of the Sun using VIM. On 2007

July 15, using the Dunn Solar Telescope (DST) at the National Solar Observatory at

Sacramento Peak (NSO/SP), New Mexico, the first polarimetric measurements using

VIM were made. As a final step, illustrating an application of high-resolution solar

observations, the results of a two-dimensional time-series acquired on 2006 June 11,

using the DST at NSOP is presented. The data is used in a study of upflow events

that are observed to occur in the Ha 656.3 nm and Na D2 589 0 nm chromospheric

absorption lines.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A tremendous amount of planning goes into the development and operation of

modern large-aperture ground-based solar telescopes. From site selection and anal-

ysis of the local seeing environment to the detailed design and implementation of

the post-focus instrumentation, the present day ground-based solar observatory is a

considerable technological and scientific undertaking. Unlike their space-based coun-

terparts, ground-based solar observatories must cope with the deleterious effects of

the Earth's atmosphere that plague image quality and limit the performance of sen-

sitive measurements such as solar polarimetry. Considerable advancements in Adap-

tive Optics (AO) technology and post-facto image reconstruction techniques such as

Speckle Masking Imaging (SMI) have made ground-based observations of the Sun a

less costly and an equally good alternative to space-based missions.

As an understanding of the processes that govern the Sun's dynamic behavior

grows, the quest for observations with higher resolution becomes more apparent.

Current projects, such as the Advanced Technology Solar Telescope (ATST) with a

4 m aperture, continue to test the technological limits and capabilities of modern day

solar observatories. First principles demand that the proper choice for the location of

a solar observatory is imperative. It is the job of the site survey to collect and analyze

data that reflects whether or not a candidate site meets a given set of criteria. The

impetus for developing those criteria is primarily based on the design of the telescope

which in turn is governed by the scientific objectives of the community.

This thesis provides some of the major components necessary to realize modern

high-resolution studies of the Sun using the 1.6 m New Solar Telescope (NST) (Goode
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et al., 2000), at Big Bear Solar Observatory (BBSO) in Big Bear Lake, California.

NST once complete, will be the largest ground based solar telescope. In Chapter 2

the characteristics and merits of BBSO as a high altitude lake-site observatory are

discussed. The results of a statistical study conducted using data gathered during

the Solar Site Survey Working Group (SSWG) assessment of BBSO as a candidate

site for the location of ATST (Verdoni and Denker, 2007) are also presented. It

is anticipated that the results from the study will provide some insight into the

scheduling of high-resolution observations as well as provide information useful in

the design of NST's THermal Control System (THCS).

In Chapter 3 NST's optical design, heat stop assembly, optical support struc-

ture, and control systems are discussed as well as the introduction of NST's suite

of post-focus instrumentation. Chapters 4 and 5 are related to the preliminary

design of the THCS (Verdoni and Denker, 2006; Verdoni et al., 2007). Particular

emphasis is given to the dome design and temperature probe experiments that verify

the existence of a strong thermal gradient present inside of the dome. In Chapter 6

Adaptive Optics (AO) and Speckle Masking Imaging (SMI) techniques, commonly

used in modern high-resolution observations of the Sun are discussed. In Chapter

7 a calibration method developed for the Stokes analyzer used by the Visible-light

Imaging Magnetogram (VIM) is presented. To verify the success of the calibration

method, the first polarimetric observations using VIM are also presented in Chapter

7. In conclusion, in Chapter 8 an example of an application of high-resolution solar

observations is given, using a set of observations taken at the Dunn Solar Telescope

(DST) at the National Solar Observatory/Sacramento Peak (NSO/SP), New Mexico.

The observations consist of simultaneous images of a supergranular cell located in a

quiet Sun region at disk center using VIM and a speckle camera.
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1.2 Scientific Motivation

The science drivers for the construction of the large-aperture ground-based solar tele-

scopes are many. One of the most pressing perhaps is an explanation of the dynamics

and structure of small scale magnetic flux elements called "flux tubes". Zwaan (1981)

states that flux tubes are a key ingredient in understanding solar magnetism. Small

scale flux concentrations are certain to emerge in the solar photosphere. However,

there is considerable debate regarding their magnetic field strength. On the other

hand, there is little debate on the importance of these structures and the role they

potentially play as channels of energy into higher layers of the solar atmosphere.

Recent high-resolution space-based observations, such as those conducted using the

Hinode Solar Optical Telescope (SOT), have observed the emergence of small scale

magnetic flux element less than 2" in size (Centeno et al., 2007). Using the spectro-

polarimeter aboard Hinode, Centeno et al. (2007) presented the first observational

evidence of a small scale emergent region and measured its longitudinal magnetic flux.

With a 1.6 m clear aperture at a wavelength of 500 nm operating near the diffraction

limit of the telescope, NST will have an angular resolution of approximately 0.065",

corresponding to a length of 50 km on the solar surface. This is close to resolving a

single flux tube or small agglomeration of flux tubes. Using VIM and the other post-

focus NST instrument, the Infra-Red Imaging Magnetograph (TRIM) (Denker et al.,

2003b), spectro-polarimetric measurements could be made of small scale emergent

flux regions. Other applications include (a) high-resolution, high cadence studies of

solar activity such as flares, (b) the temporal evolution and sub arc-second structure

of the magnetic region where the flare occurred, (c) magneto-convection in sunspots

and (d) the study of potential heating mechanisms associated with the upper solar

atmosphere (Goode et al., 2003).
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1.3 Seeing

Ground-based solar observations in the 21s t century require a site with a large clear-

time fraction, good sky transparency and excellent seeing conditions for extended

periods of time. These characteristics lend themselves to the performance of high-

resolution solar telescopes. From the onset of modern solar observations, site surveys

have played an important role in effecting the location and design of solar observa-

tories. A historic and very comprehensive solar site survey was conducted by George

Ellery Hale at Mt. Wilson in California (Hale, 1905). The Mt. Wilson site was

selected as the home for the famous 60-foot Tower Telescope. It was known at the

time that ground layer heating was associated with image degrading seeing and the

telescope was built on a tower with that in mind. To test the quality of Mt. Wilson,

observations were made using a smaller telescope and image quality was determined

through visual inspection.

In the 1970s, the Joint Organization for Solar Observations (JOSO) conducted

a thorough search for potential sites using 40 cm telescopes as well as photoelec-

tric seeing measurements to determine the seeing quality (Brandt and Wöhl, 1982).

Another site survey that resulted in the selection of Big Bear Lake as the location

for BBSO was conducted by the California Institute of Technology (Caltech, Zirin

and Mosher, 1988). The survey conducted from 1965 to 1967 recognized the value

of high-altitude lake site locations for observing the Sun. Similar to the Mt. Wilson

survey, the Caltech study determined the quality of seeing by visual inspection of

solar images developed on film. Advancements in technology and the development of

site-survey related instrumentation has provided the means for a more quantitative

approach to site selection. In Chapter 2 site-survey data collected at BBSO by the

ATST SSWG is used in a statistical study of the local seeing conditions at Big Bear

Lake.
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1.4 Enclosure Related Seeing and Thermal Control

Considerable work has been done to understand and combat seeing and seeing related

effects in solar and nighttime telescopes. In their enclosure-seeing report, the ATST

Thermal Systems Group describes the types of thermal convection that arise in ven-

tilated domes (Dalrymple et al., 2004). For ventilated domes with a passive louver

system such as in the NST dome, there are several convective effects that lead to

enclosure related seeing. The most dominant form is the convection arising from

exterior dome heating. It is costly to try and combat this effect. However, natural

cooling caused by moderate to high-speed winds can lower the outside dome tem-

perature and reduce the buoyant convection driven plumes due to the heated dome

exterior. NST will not implement any active measures to control the natural convec-

tion from the dome shell heating such as air conditioning and or shell temperature

regulation. The idea is to restrict convection to the "forced regime", which corre-

sponds to the least impact type seeing in the enclosure (Dalrymple et al., 2004). For

the 20 m diameter ATST enclosure much larger wind speeds are required to move

the convection to the forced regime than for the 10 m diameter BBSO dome, i.e.,

for a 4 m diameter mirror and a 20 m diameter enclosure the wind speed must be

approximately 6 m 	 to keep convection in the forced regime. The typical wind

speed at BBSO is about 6 m s-¹ . Therefore, the NST will almost always operate in

the forced regime. In Chapter 4 the basic design of the THCS for NST is presented.

The hierarchical structure of the THCS and a description of the THCS components

are given. Chapter 5 carries further the development of the THCS and presents the

results of experiments conducted using the 5/8-sphere dome louvers.

1.5 VIM: A Two-Dimensional Imaging Magnetograph

Solar magnetic field measurements are based on observing the polarization signal in

a solar absorption line. In the presence of a sufficiently strong magnetic field, such
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as those present in a sunspot 	 1000 Gauss), a spectral line will be split into its

respective Zeeman components. The effect is evident when looking at the intensity

(Stokes I) profile of the spectral line. For weak fields, the effect is less evident and

one must look at the polarization signal for information about the magnetic field.

A solar polarimeter is an instrument that operates as a spectrometer and has in

addition a set of polarization analyzing optics to discern between different states

of polarization. VIM is one such instrument. It uses a Fabry-Pérot Interferometer

(FPI) to scan the desired spectral line and a set of two LCVR to determine the state

of polarization. In Chapter 7 a calibration method for the two LCVRs is presented

along with the first polarimetric measurements obtained with VIM.

1.6 Quiet Sun Observations

Chapter 8 is a based on two-dimensional spectroscopic observations of a quiet Sun

region at disk center made using VIM at the DST at NSO/SP on 2006 June 11.

The telescope field was centered on a supergranular cell at disk center, and four 30-

minute near simultaneous time-series were observed with a 600 nm broad band filter

with a narrow band Ha 656.3 nm and Na D 2 589.0 nm interference filter (IF). The

analysis of the data presented in Chapter 8 focuses on the occurrence of dynamic

upflow events that occur in the solar atmosphere. Upflow events, such as the ones

presented in Wang et al. (1998), have been observed in Ha line-wing (-0.05nm)

filtergrams where they appear as dark rounded features with sizes of 2"-3". In Chae

et al. (1998) a close correlation between Ha upflow events and transition region

explosive events was established. Upward velocities of 15-30 km s -¹ are typical with

lifetimes of 1-2min. Upflow events are thought low in the solar atmosphere in regions

of magnetic diffusion. In a two-step magnetic reconnection model of presented in

Chae et al. (1998), upflow events begin as a build up of a magnetic island that is

formed as a result of slowly occurring magnetic reconnection in the photosphere.
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A critical flux is reached provoking an instability that causes the island to move

upwards with increasing velocity. The island is observed in Ha in the middle to

upper chromosphere. In Chapter 8 application of the techniques used in Lee et al.

(2000) are applied for studying upflow events in Ha using the Na D2 data. The

height of formation of the Na D2 absorption line occurs at a lower altitude then Ha,

thus allowing a unique view into the characteristics of upflow events in their nascent

stages of development in the lower solar atmosphere.



CHAPTER 2

THE LOCAL SEEING ENVIRONMENT AT BIG BEAR SOLAR
OBSERVATORY

2.1 Overview

The site survey for the Advanced Technology Solar Telescope (ATST) of the National

Solar Observatory (NSO) was initiated in 2002 to find the best location for a 4-meter

aperture solar telescope. At the end of a four year survey, three sites — Big Bear Solar

Observatory (BBSO) in California, Mees Solar Observatory (MSO) on Haleakala- ,

Maui, Hawai'i, and Observatorio Roque de los Muchachos (ORM) on La Palma,

Spain — were identified as excellent sites for high-resolution solar observations. MSO

was ultimately chosen as the future ATST site. In this chapter a subset of the ATST

site survey data focusing on the local seeing environment at BBSO is presented. Of

particular interest are the seeing characteristics at a mountain lake-site observatory,

its relation to the local environment and climate, and its implications for the 1.6-

meter New Solar Telescope (NST) currently being built at BBSO. A close correlation

of very good seeing conditions with the prevailing wind direction and speed is found.

The observatory building, located at the end of a 300-meter causeway, is surrounded

by the cool waters of Big Bear Lake, which effectively suppress the ground-layer

seeing. Very good seeing conditions from sunrise to sunset are a unique feature of

BBSO, which makes it ideally suited for synoptic observations and sustained high-

resolution studies of solar activity and space weather.

2.2 Introduction

Ground-based solar observations in the 21 st century require a site with a large clear-

time fraction, good sky transparency and excellent seeing conditions for extended

8
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periods of time. These characteristics lend themselves to the performance of high-

resolution solar telescopes. From the onset of modern solar observations, site surveys

have played an important role in effecting the location and design of solar observa-

tories.

Starting in March 2002 and ending in August 2004 the National Solar Obser-

vatory conducted a thorough study of various sites (Hill et al., 2004b,a, 2006; Lin

and Penn, 2004; Socas-Navarro et al., 2005) to place the ATST (Keil et al., 2004;

Rimmele et al., 2005; Wagner et al., 2006). Haleakala on Maui, Hawai'i was selected

as the future ATST site. Bradley et al. (2006) present a detailed study of weather

data and nighttime seeing conditions for Haleakala based in part on data from the

Maui Space Surveillance System. They also study the dependence of seeing on wind

characteristics. The ATST site survey has produced a wealth of seeing and climate

data for all finalist sites, which will be of benefit (beyond the intended scope of the

survey) for high-resolution solar observations and the operations solar telescopes at

these locations.

BBSO is a lake-site observatory situated at an altitude of 2067 m in the San

Bernardino mountains of Southern California. The Big Bear Lake follows the east-

west orientation of Big Bear Valley. This orientation and the surrounding mountains

channel the air flow and give rise to predominately westerly winds (Denker and

Verdoni, 2006). Establishing the observatory was the result of a comprehensive

site survey conducted in 1965 (Zirin and Mosher, 1988) by Caltech. Visual seeing

estimates were derived for more than 30 sites throughout Southern California. By

the end of the first year the survey had narrowed the field to the more promising sites:

Big Bear Lake, Lake Elsinore, Mount Piños, and Lockwood Valley. In general, the

survey determined that the best seeing conditions were encountered in the proximity

of lakes or close to oceans. Over water, evaporation occurs simultaneously with

cooling, which provides a natural temperature inversion and in turn limits local
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variations of the refractive index resulting in good and stable seeing conditions.

A large clear-time fraction coupled with good seeing conditions and feasibility of

construction led to the final decision in favor of Big Bear Lake.

Around the same time as the Caltech site survey, solar physicists from 11 Euro-

pean countries joined to form (JOSO) in a concerted effort to find a suitable location

to carry out solar observations of high quality in southern Europe (Brandt and Wöhl,

1982). By 1976 after a thorough survey of close to 40 sites, the organization had

narrowed the choices to two islands in the Canaries — La Palma and Tenerife. The

main difference between the two sites were the wind characteristics, i.e., wind speed

and direction. The "Caldera Effect" at La Palma for easterly winds introduces local

turbulence and deteriorates the seeing conditions. The nighttime seeing conditions

at Observatorio del Roque de los Muchachos, La Palma were described in detail in

Vernin and Munoz-Tunon (1994). The JOSO daytime seeing data, however, slightly

favored Observatorio del Teide on Izaña, Tenerife.

The ATST site survey instrument suite consisted of a sky brightness monitor

(Lin and Penn, 2004) and two instruments, the Shadow Band Ranger (ShaBaR)

and the Solar-Differential Image Motion Monitor (S-DIMM), to measure the seeing

characteristics (Beckers, 2001). The ShaBaR scintillometer data were used in two

distinct inversion procedures to determine the height stratification of the atmospheric

turbulence (Socas-Navarro et al., 2005) with the S-DIMM measurements as boundary

conditions for the ground-layer seeing. In addition, the scintillometer's DC signal

was used as a proxy for the cloud-cover and clear-time fraction. In this study, only

the S-DIMM data obtained at BBSO from 2002 March 3 until 2004 August 28 are

used, since only site-specific seeing characteristics in the context of the future NST

(Goode et al., 2003; Denker et al., 2006) are of interest. Furthermore, escaping the

ground-layer seeing by placing the entrance aperture high above the ground is not

an issue at BBSO, since the NST entrance aperture will be only 2 m higher than
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the existing telescope and the seeing improvement with height is much less than the

predictions for mountain and island sites (Socas-Navarro et al., 2005). Therefore,

the S-DIMM measurements obtained at a height of 8 m above the ground should

be a fair representation of the seeing conditions under which the NST will operate

(Denker and Verdoni, 2006).

In Section 2.2, some of the geographical and climatological features, which make

BBSO a unique site for high-resolution studies of solar activity and space weather

phenomena (Gallagher et al., 2002) are presented. Instrument description and oper-

ation of the S-DIMM at BBSO are summarized in Section 2.3. The results of this

study are presented in Section 2.4, where the seeing characteristics at BBSO, their

relation to wind speed and direction, and the role of Big Bear Lake in effectively sup-

pressing the ground-layer seeing are discussed. Section 2.5 provides a brief summary

of the most important results and outlines some of the future work in the context of

NST.

2.3 Local Climate and its Effects on Big Bear Lake

Big Bear Lake is an artificial reservoir in the San Bernardino Mountains (Figure 2.1)

with a storage capacity of 90 x 10 6 m3 and a surface area of 12 km 2 . The lake is

elongated in its east-west direction with a length of about 6 km and a width of about

2 km. The widest section of the lake is about 4 km. However, numerous bays and

the lake's irregular shape result in a shore line over 33 km. The average depth is

about 7 m with the deepest point located at the western end of the reservoir near

the dam at 22 m. Towards the end of the drought season in late 2004, the lake

level dropped to 5.3 m below full corresponding to a reduced storage volume of only

36.5 x 106 m3 . The surface area of the lake shrunk to an extend, where the shore

line receded about 50 m beyond the observatory peninsula, i.e., the observatory was

no longer surrounded by the lake. The lake level data are provided by the Big Bear
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Figure 2.1 Topographical map (shaded relief) of Big Bear Lake and Big Bear Valley.
BBSO is located at 116° 54.9' West and 34° 15.2' North.

Municipal Water District (BBMWD, http : //www . bbmwd . org/) on a weekly basis a

service to the public.

The San Bernardino Mountains receive most of their precipitation during the

winter months. The lake is replenished in the spring by the run-off of the snow-

packed mountains surrounding Big Bear Valley with minor contributions during the

"monsoon season" in the summer. Figure 2.2 shows the lake level from 2000 to mid

2006. Evaporation in the summer and partial replenishment of the reservoir in the

winter produce a characteristic step function, which is associated with a multi-year

drought period in Southern California. The ATST site survey was carried out during

the lowest lake levels. During a 14-day period with extreme precipitation, the lake

rose by more than 5 m, which indicated the end of the drought period in 2005.
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Figure 2.2 The level of Big Bear Lake from 2000 until mid-2006. The ATST
site survey was conducted from March 2002 until August 2004 during an extended
drought period in Southern California.

Precipitation in 2005 and 2006 has been above average and the lake was filled to

capacity.

BBSO is located on a small island connected to the north shore of the lake by

a 300-meter causeway (see Figure 2.3). Big Bear lake is situated at an altitude of

2067 m in the San Bernardino mountains of southern California. Geographically, the

San Bernardino Mountain range is oriented in an east-west direction. This orienta-

tion allows for a predominantly westerly wind flowing along Big Bear Valley. The

unique location of BBSO inside a mountain lake, which effectively suppresses the

ground-layer seeing, raises one important issue. Even though the ATST site survey

has been the most extensive survey of solar observing sites to date, its duration is
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Figure 2.3 Big Bear Solar Observatory with ATST site survey test stand in 2002.

necessarily short compared to complex climate phenomena such as ocean-atmosphere

interactions.

The El Niño-Southern Oscillation (ENSO) phenomenon, for example, is one of

the strongest sources of climate variability in Southern California, which has been

linked to the recent multi-year drought period in the south-western U.S. A detailed

review of droughts and the paleoclimatic variability in the western U.S. has been

presented by Woodhouse (2004). Periodic drought conditions are common and as

the result of global climate change, the south-western U.S. is predicted to become

dryer during both summer and winter seasons with more extreme temperature days

and an increase in the severity of drought conditions (Hanson and Weltzin, 2000).

Since climate prediction at regional scales are still in their infancy and past conditions

might not be a good analogue for the future, the BBSO ATST results can only be

interpreted as a snapshot of a range of seeing conditions. Similar connections between

local climate may also exists for other sites covered in the ATST site survey. However,

cost and feasibility have prohibited long-term studies of seeing characteristics so far.
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2.4 Observations

Differential Image Motion Monitors (DIMMs) have been used by nighttime astron-

omers for years to study the seeing conditions of a particular site (e.g., Sarazin and

Roddier, 1990). For nighttime observatories a typical DIMM instrument consists of

two small pupils a fixed distance apart that image starlight onto a CCD or other

detector. The images are optically separated on the CCD and the differential image

motions are measured. The S-DIMM as presented in Beckers (2001) uses the differen-

tial motion between two images of the solar limb. The instrument was first presented

by Liu and Beckers (2001) in a study of the seeing conditions at the Fuxian Lake

Solar Station. The S-DIMM used in the ATST site survey consists of two apertures

with a diameter of 45 mm. The apertures were covered with a reflecting foil to

attenuate the incident light to approximately 10 -5 transmission.

They are separated by 225 mm in the north-south direction. The apertures are

placed on a 30 cm aperture telescope with a focal length of 2721 mm manufactured

by Meade. A narrow slit is placed at a right angle across the solar limb. The

limb is imaged separately on to a CCD detector and thus the differential motion is

measured. The relation between the variance of the differential image motion and

the Fried-parameter 7. 0 can be found in Sarazin and Roddier (1990). In the case of

the S-DIMM, only the longitudinal variance can be used in determining the Fried

parameter r0 . With daytime correlation time-scales being on the order of 'r0 40 ms,

the 10 s interval is long enough to yield reliable statistics used for determining the

variances of the differential image motion.

The height of the test stand platform is 6 m above the causeway. The effective

height of the seeing measurements is 8 m above ground taking into account telescope

pier and the mount of the Meade telescope. The geodetic construction of the test

stand allows only translational motions of the platform in the horizontal direction

without any tilts. S-DIMM can be operated in wind speeds of up to 10 m/s. In
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Figure 2.4 Rainbow color coded image of the Fried parameters r0 obtained with
S-DIMM. The color red corresponds to r 0 > 10.0 cm. Missing data points are
displayed in light gray. The thick black lines represent sunrise, local noon, and sunset,
respectively. The gray contours refer to air masses of 10, 5, and 2, respectively.

high wind conditions exceeding this threshold, the slit images can move off the CCD

detector.

To aid the analysis, solar ephemeris including optical air mass computations

were obtained from the Horizons On-Line Ephemeris System (http: //ssd jpl .

nasa.gov/horizons cgi, Giorgini et al., 1996) provided by the Jet Propulsion Lab-

oratory (JPL). The S-DIMM, ShaBaR, weather station, and ephemeris data are

aggregated in one common data format. Since the seeing data was sampled at a

cadence of 10 s for a period of 16 hours (from 4:00 am to 8:00 pm local time), each

parameter was saved as a two-dimensional array with the observing day on one axis

and the time of day on the other axis. The formatted data consisted of 910 x 5760

data points. Even though many data points do not contain any meaningful data

(e.g., before sunrise and after sunset), this format enabled a straightforward merging

of disparate data sets using standard logical operations. All data reduction was car-

ried out in the Interactive Data Language (IDL) and the source code is available

upon request.

The entire data set of S-DIMM Fried parameter measurements is summarized

as a color image in Figure 2.4. In addition to indicators of sunrise, local noon, and
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sunset (thick black lines), gray contour lines were added for air masses of 10, 5 and

2. Missing data values are presented in light gray. Most of the observations were

obtained with air masses lower than 2. Only in the late afternoons during the winter

months some measurements exist in the air mass regime between 2 and 5. Data

points with air masses greater than 5 are completely absent.

The ATST seeing monitor is not a fully automated system. An observer had

to start it every morning and shut it down in the (late) afternoon. Therefore, the

ATST seeing data is biased by the site-specific observing profile. At BBSO, observing

typically starts between 8:00 am and 9:00 am, which can easily be deduced from

Figure 2.4. Even the switch to daylight savings time is clearly discernible. The seeing

monitor was typically shut down between 4:00 pm and 6:00 pm. This bias towards

observations during low air masses is quite different from the observing profiles at

mountain sites. Here, the good seeing conditions in the early morning required an

earlier start of the observations leading to a much larger number of observations with

higher air masses.

The observing and error statistics of the BBSO seeing monitor are summarized

in Table 2.1. The health status flags are represented in hexadecimal notation where

each hexadecimal number corresponds to a particular error condition. Flag 2 is

related to a read-out problem of the Meade telescope's right ascension position,

which does not affect the seeing data. Flag 8 almost exclusively occurs when no light

reaches the ShaBaR detectors, i.e., the instrument is stored in a protective weather

cover but the weather station is still turned on to collect data. This data has to be

excluded from the data analysis. In contrast to the approach in the SSWG report,

data with Flag 10 were included, since their frequency distributions were very similar

to the other ones included in the study. Since Flag 10 typically indicates high-wind

conditions and BBSO is the windiest site in the ATST site survey, a large number

of data points would have to be discarded otherwise.



Table 2.1 Health Status of All Seeing Monitor Subsystems

All seeing monitor subsystems are working.
Failed Meade.
Failed ShaBaR.
Failed ShaBaR/Meade.
Non-zero rail count (high wind).
Non-zero rail count (high wind) and failed Meade.
Non-zero rail count (high wind) and failed weather station.
Non-zero rail count (high wind) and failed ShaBaR.
Non-zero rail count (high wind) and failed ShaBaR/Meade.
Observing log entry.
Observing log entry and failed Meade.
Observing log entry and non-zero rail count (high wind).
Observing log entry and non-zero rail count (high wind) and failed Meade.

NOTE.— Only measurements between sunrise and sunset are included. The data flags are: (0) good data, (1)
failed video, (2) failed Meade, (4) failed weather station, (8) failed ShaBaR, (16) non-zero rail count (high wind), and
(32) observing log entry. Since system events can occur simultaneously, the status flags are added numerically and are
represented in hexadecimal notation. Data points with failed ShaBaR flags were excluded from the data analysis.
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In summary, if the seeing monitor would have been operational every day from

sunrise to sunset 4,070,000 individual measurements could have been obtained. How-

ever, the number of data entries for BBSO is about 1,430,000 (see Table 2.1). A sub-

stantial fraction of the missing data is related to the aforementioned observer profile.

Other contributions are from complete system failures (July and November 2003)

and bad weather conditions. Considering all data without a "failed ShaBaR" error

flag about 910,000 data points could be used in this study. This number, however,

is further reduced by about 60,000 data points, since some S-DIMM data were not

properly transferred to the control computer. This led to periodically occurring Fried

parameter values of r 0 = 0.0 cm. The signature of this are the thin gray horizontal

bands in Figure 2.4.

In the final report (http : //atst .nso.edu/site/reports/RPT -0021.pdf, Hill

et al., 2004b) of the SSWG, these missing values were replaced by a running average

to have a better statistics for the comparison of S-DIMM and ShaBaR data. In this

study, a more conservative approach is used and these values are dropped completely.

In addition, all BBSO data was included in this study, whereas the time period

covered in the SSWG report was restricted to a common time frame for the different

sites (2002 July 18 to 2004 August 30). Since the treatment of missing data values

and the instrument health status flags differs from the algorithms used in the SSWG

report, the numerical results show some deviations. However, the overall agreement

between the results is very good.

2.5 Results

2.5.1 General Seeing Characteristics

The most important parameters describing the seeing characteristics at BBSO are

the Fried parameter r ip, the wind speed v, and the wind direction 0. The frequency
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distributions discussed in this section include indiscriminately all valid data points

of the entire site survey from from 2002 March 3 to 2004 August 28.

In Figure 2.5, the frequency distribution of the Fried parameter r0 is shown.

The mean, median, and 10th percentile of r 0 are 6.4 cm, 6.1 cm, and 10.1 cm,

respectively. These values are indicated by vertical lines in Figure 2.5. Furthermore,

a Fried parameter r 0 > 7.0 cm occurs during more than 37.3% of the time. The

respective value for r0 > 12.0 cm is 4.2%. Using the frequency distribution shown

in Figure 2.5 as representative, observing times of 1166 and 130 hours are found

for these thresholds of r 0 > 7.0 cm and r0 > 12.0 cm. These blocks of observing

time have already been corrected for the Clear Time Fraction (CTF)at BBSO. In

Table 2 of the SSWG final report (Hill et al., 2004b) two values of 0.712 and 0.714

are listed for the CTF. The latter value was obtained during the site survey of the

Global Oscillation Network Group (GONG Hill et al., 1994). In contrast to this

study, the SSWG final report lists in Table 1 the number of hours with 7- 0 > 7.0 cm

and r0 > 12.0 cm at BBSO as 863 and 65, respectively.

The r0 thresholds were used in the ATST site survey as benchmarks for com-

paring the various sites. The frequency distribution of the r 0 values can be approxi-

mated by a log-normal distribution (see e.g., Fried and Meyers, 1974)

with a mean of p = 1.8 and a standard deviation of a = 0.5 of r0 's logarithm.

The expected value is E(r0 ) = exp(µ + a 2/2) = 6.8 cm with variance Var(r0 ) =

exp(σ² — 1) exp(2µ + a2) = 21.3 cm2 (corresponding to a standard deviation of

4.6 cm). Since a significant number of r0 values cluster close to 0.0 cm, the log-normal

distribution cannot be used to fit the entire population. Therefore, a Gaussian
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Figure 2.5 Histogram of the Fried parameter r 0 . The vertical lines represent the
mean (solid), median (dashed), and 10th percentile values of the Fried parameter
r0 , respectively. The dotted curves (from left to right) represent the normal and
log-normal distribution fits, respectively.

with a mean r0 of = 2.8 cm and a corresponding standard deviation of a = 1.3 cm

was added. Other fits, including two Gaussians or two log-normal distributions, led

to unsatisfactory results. This might be an indication of the presence of two different

seeing regimes. A similar problem was found in fitting the wind speed distribution

(see Figure 2.6), where an additional Gaussian was required to account for the low

wind speed population. Indeed, the two different r0 distribution could be a signature

of the changeover from the gentle mountain downslope winds at night to the more

forceful daytime winds traversing Big Bear Lake.
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Figure 2.6 Histogram of the wind speed v. The vertical lines represent the mean
(solid), median (dashed), and 10th percentile values of the wind speed v, respectively.
The dotted curves represent the two normal distributions used to fit the bimodal wind
speed profile.

The frequency distribution of the wind speed v is shown in Figure 2.6. The

mean, median, and 10th percentile of v are 5.8 m s -¹ , 5.9 m s-¹ , and 8.5 m s-¹ ,

respectively. The distribution has a bimodal shape with a distinct shoulder on the

low wind speed side. Therefore, two Gaussians were fitted to the curve (dotted

lines in Figure 2.6) and a low wind speed distribution was obtained with a mean of

= 1.9 m s' and a standard deviation of a 0.7 m s-¹ . The respective values

for high wind speeds are ,u, = 6.1 m s -¹- and a = 2.1 m s'. The low wind speed

distribution encompasses about 5.3% of the total wind speed measurements.
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Figure 2.7 Two-dimensional frequency distribution of the Fried parameter r 0 and
the wind speed v.

The two-dimensional frequency distribution in Figure 2.7 combines the two

most important parameters, wind speed v and Fried parameter r 0 , which describe

the seeing characteristics at BBSO. The shape of the distribution resembles the letter

"D" , which indicates an asymmetric distribution towards higher Fried parameters

in the most common wind speed regime. Most values are clustered in the range

v = 4.0 to 8.0 m s-¹ and r0 = 4.0 to 8.0 cm. Good seeing conditions are rarely

encountered under low- or high-wind speed conditions. High wind conditions are

typically the result of storm systems over the Pacific Ocean traveling southward along

the Californian coastline before turning inland to move across the south-western

U.S. Occasionally, high winds are associated with Santa Ana winds (Hu and Liu,

2003), which are a product of an inland high pressure system funneling gusty, hot



Figure 2.8 Left. Polar plot representing the distribution of the wind directions 0
at BBSO. Middle. Frequency distribution of the wind speed v vs. wind direction 0
(grid spacing Δv = 2 m s"). Right. Frequency distribution of the Fried parameter
r0 vs. wind direction 0 (grid spacing Δr0 = 3 cm). The distributions were separately
scaled for each of the 16 wind direction bins.

desert winds through the canyons and valleys of the San Bernardino Mountains. In

the former case, strong turbulence at the altitude of the jet stream will lead to a

deterioration of the high-altitude seeing. On the other side of the spectrum, i.e.,

in the low wind speed regime, the laminar wind flow across the lake surface ceases

to exist. As a result heat plumes will rise from the dome and observatory island

increasing ground-layer turbulence.

The observations summarized in Figure 2.7 bear also on the NST design. Wind

speeds larger than 2.0 m s -¹ are required to effectively vent the NST dome to avoid

dome seeing. However, if the wind speed exceeds 5.0 m s ¹ , the wind flow through

the dome has to be limited to avoid wind buffeting of the open telescope structure.

Since this wind speed regime encompasses the best seeing conditions at BBSO, care

has to be taken in the thermal control of the dome interior. This requires that

dome louvers have to automatically adapt to changing wind conditions (Verdoni and

Denker, 2006; Denker and Verdoni, 2006).

One of the most intriguing features of the micro-climate at BBSO is the strong

correlation of the daytime wind direction with the east-west orientation of Big Bear

Valley. The frequency distribution of the daytime wind directions is shown in the left
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panel of Figure 2.8. The length of the pie-shaped segments represents their frequency

of occurrence for each of the 16 directions of the compass rose. The prevailing wind

directing is West (W: 37%, WSW: 28%, and SW: 7%). In 12% of the measurements,

the wind is from the East. The remaining wind directions contribute less than

16%. The origin of the daytime winds are pressure gradients between the coastal

Los Angeles basin and the interior regions of the Southern Californian deserts. The

valleys of the San Bernardino Mountains then channel these winds, thus, creating

the laminar westerly wind flows observed at BBSO. The occasional easterly wind

are related to a reversal of the pressure gradient. The resulting strong offshore and

downslope winds are commonly referred to as Santa Ana winds (Hu and Liu, 2003),

which are characterized by warm temperatures, low relative humidity, low level wind

shears and clear skies. The nighttime wind conditions at BBSO are quite different.

Cold mountain downslope winds drain into the valley leading to a more uniform

distribution of wind directions - with the exception of southerly winds, which rarely

occur. Typical wind speeds are about 2.0 m s-¹ substantially less than during the

daytime.

The middle panel of Figure 2.8 displays frequency distributions of the wind

speeds for each of the 16 directions on the compass rose. The rainbow color code

indicates the number of occurrence with red colors indicating the largest number

of occurrences. Each distribution was normalized individually to account for the

strongly biased occurrence of the wind directions. The highest wind speeds are

encountered for westerly wind directions. The median wind speed is about 7 m s-¹ .

The corresponding median wind speed of about 5 m s' for easterly winds is sub-

stantially less. Since the westerly wind speeds cluster between 4.0 and 8.0 m s',

sufficiently strong winds are available to flush the ventilated NST dome interior

enabling active control of the dome thermal environment.
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The right panel of Figure 2.8 follows the same format as the previous panel

but displays the frequency distributions of the Fried parameter r 0 . The highest

values of the Fried parameter (median r0 7.0 cm) are encountered for westerly

winds. The seeing conditions are still good (median r 0 ti 6.0 cm) for East winds,

which are often associated with Santa Ana conditions. However, since Santa Ana

winds carry large amounts of dust from the desert, good seeing comes at the price

of reduced sky clarity. Only if the winds are from the North, the seeing conditions

deteriorate to a point (median r 0 < 4.0 cm), where high-resolution solar observations

become impossible. North is the only direction, where the air flow is never above the

lake surface. Downslope winds from the mountains and the dense pine forest along

the north shore are responsible for elevated air turbulence. The strong correlation

between wind speed and good seeing conditions is one of the features responsible for

the unique seeing profile at BBSO, which allows high-resolution solar observations

for extended periods of time from sunrise to sunset (winds from the North occur only

in 10% of the time).

2.5.2 Diurnal and Seasonal Variation of the Seeing Conditions

The cool waters of Big Bear Lake tend to suppress the ground-layer seeing typically

encountered at mountain and mountain-island sites. This effectively eliminates the

deleterious effects of ground heating begining in early morning and experienced at

sites without water. The top panel of Figure 2.9 shows the Fried parameter r0 as a

function of time from local noon. The choice of local time as the temporal axis has

the advantage to see at one glance the seeing conditions during a typical observing

day at BBSO. The shaded background represents the standard deviation of all r 0

values for a given time. The best seeing conditions are typically encountered about

two hours before local noon. The convex shape of the temporal seeing profile is

quite different from mountain and mountain-island sites, which show a pronounced
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Figure 2.9 Top. Average Fried parameter r0 as a function of time with respect
to local noon. Bottom. Corresponding air mass corrected temporal behavior of r 0 .
In both cases, the gray background represents the standard deviation reflecting the
range of typically encountered seeing conditions.
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maximum early in the morning before ground heating sets in. Considering that

observations with solar AO require a Fried parameter r0 > 7.0 cm (Rimmele, 2000;

Denker et al., 2007), Figure 2.9 clearly indicates that AO corrected observations are

possible at BBSO for substantial periods of time from sunrise to sunset.

Even though an air mass corrected Fried parameter is only meaningful in night-

time observations, the air mass corrected temporal behavior of the Fried parameter

r'0 (bottom panel of Figure 2.9) still provides some important insight. The time

profile is surprisingly flat with typical values of r'0 ti 8.0 cm. The notable exception

is in the afternoon at five hours after local noon. A closer inspection of the data

reveals that these higher ro values originate from a small number of observations

in the winter time close to sunset. In these cases, the air mass is large. Thus, the

air mass corrected Fried parameter is high. As mentioned in Section 2.3, the BBSO

ATST seeing monitor was usually started between 8:00 am and 9:00 am and turned

off between 4:00 pm and 6:00 pm local time. Therefore, almost all of the measure-

ments were taken at low air masses. This explains the absence of a lobe with higher

r0 values after sunrise in the bottom panel of Figure 2.9. The slightly larger ro values

before sunset hint at such a lobe. Note that the statistics for observations outside the

range of local noon +4 hours are very poor and strongly biased towards afternoon

observations in the winter (see Figure 2.4).

Since the lake-site location of BBSO is a unique feature for a solar observatory,

the question is posed, if the seeing conditions are related to the length of the line-

of-sight that the sunlight traverses across the lake. In a first step, the air mass

corrected Fried parameter ro as a function of the solar azimuth angle. This curve

is very flat with an average ro of slightly less than 8.5 cm. In this display, the

conspicuous late afternoon spike seen in the bottom panel of Figure 2.9 completely

disappears. Note that again the observations are restricted to low air masses due to

the operating schedule of the seeing monitor. In a second step, a topographical map
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of Big Bear Valley was digitized and the lake surface was. Thus, the line-of-sight

length across the lake could easily be computed for any value of the Solar azimuth

angle. However, no meaningful correlation between seeing conditions and the Sun's

position across the lake was detected. Considering that the worst seeing conditions

are encountered for northerly winds, it was concluded that the wind direction is

of minor importance for the seeing conditions, as long as it traverses a substantial

fraction of water. Under these conditions, the wind flow becomes laminar and the

ground-layer seeing is effectively removed.

The nighttime wind regime is characterized by gentle mountain downslope

winds with typical wind speeds of less than 2.0 m s -¹ . Furthermore, large fractions

of the night might not show any air motion at all. The downslope winds descend the

mountain ridges surrounding Big Bear Lake from any direction with the exception

of South. The wind characteristics during the day are quite different as can be seen

in Figure 2.10. Beginning at sunrise, the mild winds encountered during the night

increase in force until they reach their maximum of about 6.0 m s-¹ at local noon.

Ground heating and the pressure differential between inland desert and coastal areas

are the origins of these winds, which will calm again after sunset. Correlated with the

increase of wind speed, a rapid decrease of air moisture is observed. The humidity

at noon is less than 40% during 60% of the time. The interaction of increasing wind

speed and decreasing air mass is one explanation of the larger Fried parameters seen

at 10:00 am local time in the top panel of Figure 2.9.

The bar chart in Figure 2.11 depicts the seasonal variations of the wind speed.

The dark gray bars represent the mean wind speed for each month. In addition, bars

in lighter grays were included to indicate the top 10 th and 30 th percentiles of the

monthly distributions. The difference in wind speed between months are typically

less than 2.0 m s-¹ . The highest wind speeds occur in the summer months, when the
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Figure 2.10 Average wind speed as a function of time with respect to local noon.
The gray background represents the standard deviation reflecting the range of typi-
cally encountered wind conditions.

mean values approach 6.0 m s -¹ . The wind characteristics for the remaining months

are very similar.

The bar chart of the seasonal variation of the Fried parameter r 0 (Figure 2.12)

essentially follows the seasonal variation of the wind speeds (Figure 2.11). The

best seeing conditions take place in the (late) summer, when the Fried parameter

r0 exceeds 7.0 cm. With the exception of the months of February and April, the

mean Fried parameter hovers around 6.0 cm. The winter and early spring season at

BBSO is characterized by short but sometimes severe winter storms, which can last

several days. Since the ATST site survey covered less than three years, the variance

in the mean value and percentiles of r0 could be related to the small sample, in
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Figure 2.11 Monthly variation of the wind speed v. The average wind speed is
shown as dark gray. The lighter grays correspond to the top 10 th and 30th percentile
of the monthly frequency distributions.

which the winter storms are unevenly distributed. The seasonal variation of the

Fried parameter r0 strongly suggests an all year operation of the observatory, which

again makes BBSO a good candidate for synoptic observations and sustained high-

resolution observing campaigns.

2.6 Conclusions

The following list provides the major findings and conclusions of this examination of

the ATST site survey data.

1. Fried parameters of r0 > 7.0 cm are necessary to resolve solar granulation so

that the wavefront sensor of an AO system can track on quiet Sun (Rimmele,
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Figure 2.12 Monthly variation of the Fried parameter r 0 . The average Fried param-
eter is shown as dark gray. The lighter grays correspond to the 10 th and 30 th per-
centile of the monthly frequency distributions.

2000; Denker et al., 2007). Since the mean Fried parameter is r0 = 6.4 cm,

AO-corrected observations can be obtained at BBSO for extended periods of

time.

2. The flat seeing profile with good seeing conditions from sunrise to sunset makes

BBSO ideally suited for synoptic observations with small telescopes with aper-

tures of less than 25 cm, which do not have an integrated AO system.

3. The seasonal variation of the Fried parameter r 0 indicates that high-resolution

observations can be obtained all year round. However, the best seeing condi-

tions take place in the (late) summer.
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4. The correlation between wind speed v and Fried parameter r 0 suggests that

strong laminar wind flows across the lake are necessary to effectively removed

local turbulence responsible for ground-layer seeing. The mediocre seeing con-

ditions related to mountain downslope winds support this finding.

5. The ATST site survey was conducted during a severe drought in Southern

California. Big Bear Lake receded from the observing peninsula and exposed

much of the lake floor, which gave rise to local turbulence. For this reason,

better seeing conditions should be expected for higher lake levels, when the

observatory peninsula is tightly surrounded by the lake.

6. Finally, as with the "Caldera Effect" at La Palma, the seeing conditions at

BBSO are closely related to local topography and micro-climate. Even though

BBSO belongs to the class of mountain-lake sites, the strong influence of local

topography and micro-climate leaves the question unanswered, if BBSO is typ-

ical representative of that class. Panguitch Lake in Utah was another mountain-

lake site included in the first half of the ATST site survey. Comparing both sites

might provide important clues on how lakes effectively suppress of ground-layer

turbulence and if these results could be generalized to represent an entire class

of observing sites. The ATST site survey has provided a wealth of information

for some of the major solar observatories in the world to accurately assess these

site-specific characteristics.

The ATST site survey provided comprehensive seeing information for a variety

of sites, which ultimately led to the selection of Haleakala, Maui, Hawai`i as the future

ATST site. Since many of the major solar observatories were included in this study,

the data provides also detailed seeing information for each of the sites, which will be

beneficial for the operation of existing telescopes and siting of future instruments.

Furthermore, the site survey not only allowed for a rigorous characterization of the
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BBSO seeing environment as presented in this study, but also motivated the integra-

tion of seeing measurements into the operation of NST (Denker and Verdoni, 2006).

Upon completion NST will be engaged in a host of campaign-style solar observing

programs consisting of high-resolution spectro-polarimetry and synoptic studies of

solar activity (Gallagher et al., 2002; Goode et al., 2003; Denker et al., 2006). To

aid in the prioritization and scheduling of these programs, work has already begun

incorporating the existing ATST seeing data into future NST operations.



CHAPTER 3

THE NEW SOLAR TELESCOPE

3.1 Overview

NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture.

The project is a collaborative effort between BBSO, the Korean Astronomical Obser-

vatory (KAO) and the Institute for Astronomy (IfA) at the University of Hawaii.

NST replaces the 65 cm vacuum telescope at BBSO and from the start will be

engaged in high resolution campaign-style observations of the Sun with an emphasis

on small-scale photospheric magneto-convection and chromospheric dynamics. NST

will be housed in the existing observatory structure. However, modification of the

telescope pier and replacement of the dome was necessary to accommodate NST's

larger size and open structure design. As of January 2008, all major contracts for

design and fabrication have been made and construction and installation of NST

is well underway. In this chapter, an overview of BSSO site characteristics, NST

optical design, heat stop assembly, optical support structure (OSS), control systems,

and finally active optics, adaptive optics and post-focus instrumentation is presented.

Some of these topics are discussed in much greater detail in other chapters of this

thesis but the aim here is to present a complete picture of NST and the robustness

of the underlying design ideas and their execution.

3.2 Introduction

Resolving the fine structure on the Sun is one of the major drivers in building large

aperture solar telescopes. With a clear aperture of 1.6 m at a wavelength of 500 nm

the NST will have an angular resolution of approximately 0.065". This is an angular

resolution corresponds to a length of approximately 50 km on the solar surface, which

35
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by no accident is on the order of the cross-section of a single magnetic flux tube — a key

ingredient in understanding solar magnetism (Zwaan, 1981). With recent advances

in AO, NST joins a growing group of ground-based open-structure solar telescopes,

moving beyond the conventional meter-class vacuum telescopes that have been in

operation at solar observatories for decades. NST is ideally suited for campaign-style

solar observations providing unparalleled spatial and temporal resolution for both

active region and quiet sun studies. The telescope will feed facility class post-focus

instrumentation that includes BBSO's next generation of magnetographs (Denker

et al., 2003a,b; Cao et al., 2006). Telescope operations will also benefit from AO and

a Real-Time Image Reconstruction (RTIR) system that employs parallel processing

(Denker et al., 2001b, 2005). Both the AO and RTIR systems will be discussed in

more detail in Chapter 6.

NST will play an important role as a major contributor in the solar physics

community by providing imaging of the Sun with unprecedented spatial resolution.

It will be in a key position to contribute data and research with active space-based

missions such as the Solar Dynamics Observatory (SDO), Solar TErrestrial RElations

Observatory (STEREO) and the SOLAR-B/Hinode mission. The large field-of-view

(FOV) magnetic measurements of the Helioseismic and Magnetic Imager (HMI) on

board SDO can be complemented with higher resolution magnetic field measure-

ments taken using both of the NST imaging magnetographs. In a similar way NST

will complement both STEREO and Hinode observations with higher spatial reso-

lution images and magnetograms. Along with these collaborations the design and

construction of NST began with some specific science objectives.

The objectives of NST are (a) high-resolution, high cadence studies of solar

activity such as flares, (b) the temporal evolution and sub arc-second structure of the

magnetic region where the flare occurred, (c) the study of the dynamics of kilo-Gauss

flux tubes, (d) magneto-convection in sunspots and (e) the study of potential heating
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Figure 3.1 Big Bear Solar Observatory outfitted with the recently refurbished dome
at the end of a 300 m causeway. In the foreground of the image is a small dome
housing the earthshine and Ha full-disk telescope.

mechanisms associated with the upper solar atmosphere. All of these objectives

require high-angular resolution in order to resolve the fundamental photospheric

magnetic structure size which lays at the heart in understanding the mechanisms

responsible for transporting energy flux from the photosphere to the upper solar

atmospheric layers. Along studies of small-scale magnetic fields, NST will engage in

the study of larger concentrations of magnetic flux such as sunspots. By providing

high-resolution observations over long periods of time the NST is in a key position

to bridge the gap between global and local solar phenomena.

3.3 Site Characteristics

BBSO is located at the end of a 300 m causeway that stretches out from Big Bear

Lake's north shore. Figure 3.1 shows the main observatory building, which is out-

fitted with the new NST dome, at the end of the causeway. The observatory was

established in 1969 by California Institute of Technology, after a comprehensive site
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Figure 3.2 Seeing characteristics for three of the sites identified in the ATST site
survey suitable for high-resolution solar observations. The x-axis shows the hour
angle of the Sun while the y-axis represents the median Fried parameter r 0 . The three
lines, solid, dashed-dotted and dashed represent BBSO, La Palma, and Haleakala,
respectively (Figure 2 in Denker et al. (2006)).

survey had been carried out (Zirin and Mosher, 1988). Big Bear Lake is located at an

altitude of approximately 2000 m in the San Bernardino Mountains of Southern Cal-

ifornia. The lake actively suppresses the ground layer seeing, which coupled with a

predominately westerly wind affords BBSO excellent conditions for solar observing.

Chapter 2 provides an in depth description of the local seeing characteristics at

BBSO. The characterization was based on the analysis of data taken by the SSWG

during the search for the best location for the ATST. BBSO benefits from long

periods of good seeing (median r 0 greater than 6.0 cm) throughout most of the day,

with higher values occurring closer to local noon.

This is a markedly different profile from the high-altitude,volcanic island loca-

tions such as La Palma, Canary Islands and Haleakala, Maui considered in the ATST

survey. For these sites the best conditions occur early in the day and then taper off

by local noon when the ground-layer seeing begins to dominate. Figure 3.2 shows the

seeing characteristics for La Palma (dashed-dotted), Haleakala (dashed), and BBSO

(solid). It is important to note that the height of the SSWG instrument (Beckers,
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2001) matches that of the NST primary mirror. Thus, the data collected by the

survey had a direct impact on the design of the thermal control of the telescope and

dome environment (Verdoni and Denker, 2006). The details of the thermal control

for the NST are presented in length in Chapters 4 and 5.

3.4 Optical Design

NST was modeled after the Scatter-free Observatory for Limb Active Regions and

Coronae (SOLAR-C) of the University of Hawai'i. SOLAR-C is a 0.5 m off-axis

coronagraph funded by the National Aeronautics and Space Administration (NASA)

and the Air Force Office for Scientific Research (AFOSR). It is operated by the Uni-

versity of Hawaii on Haleakala. (Kuhn et al., 2003). The development and successful

deployment of SOLAR-C has shown that an off-axis design can achieve the required

collimation, alignment and scattered light performance required for NST. SOLAR-C

also provided insight into solutions of technical issues such as mirror cell support,

thermal design, active optical alignment, control and software not only for NST but

also for future off-axis open-structure telescopes such as ATST.

Like the SOLAR-C, NST is an off-axis Gregorian-type telescope. The telescope

is comprised of four mirrors - a 1.7 m parabolic primary (M1), a 14.5 cm concave

ellipsoidal secondary (M2), and two diagonal flat mirrors (M3 and M4). The diag-

onal flat mirrors M3 and M4 direct the light into the declination and Coudé axis,

respectively. The heat stop assembly, explained in the next section, will be placed

at the primary focus between Ml and M2. The primary mirror was fabricated from

a Zerodur blank. Zerodur, the material of choice for most modern high precision

optical applications, has high material homogeneity, sufficiently large operating tem-

perature and low coefficient of thermal expansion (0.1 + 1.0 x 10 -7 K-¹ ). As stated

above the diffraction limit of the telescope in the visible at 500 nm is 0.065" with

a corresponding near-infrared value of 0.21" at 1,600 nm. NST working wavelength
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Figure 3.3 NST optical optical layout showing the parent mirrors of both Ml and
M2 (courtesy of Roy Coulter).

range will be from 390-1,700 nm. Figure 3.3 shows NST's optical layout. The pri-

mary mirror is situated 1.84 in from the optical axis of its 5.3-meter parent mirror.

The f-ratio of the Ml parent is f/0.73 with the f-number of the primary mirror

at 2.4 corresponding to a focal length of 4.1 m. Both Ml and M2 are figured to

A/30 and A/15 respectively with a finishing of 1.0-1.5 nm. The FOV in the optical

laboratory will be 180". The effective focal length of NST is 83.2 in corresponding

to a final focal ratio in the Gregorian focus of f /52. For an effective focal length of

83.2 m, the diameter of the secondary image is 73 mm corresponding to a FOV of 3'

and a plate scale of 2.48" min'.

The University of Arizona's Steward Observatory Mirror Laboratory (SOML) is

developing computer generated hologram (CGH) techniques for use in producing 8.4-

meter mirrors for large-scale projects such as the Giant Magellan Telescope (GMT)

and the Large Synoptic Survey Telescope (LSST). To test these techniques SOML

is using the NST primary as a 1/5 scale project (Martin et al., 2004). Figure 3.4
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Figure 3.4 The rms-surface error of the NST primary mirror as measured by the
SOML in February 2006 (Figure 6 in Denker et al. (2006)).

shows the surface errors of M1 as measured in February 2006. At the time of this

measurement the rms-surface error was 35 nm — approximately 25 nm off from the

10 nm value required for the NST. To date, the polishing of Ml has reached the

expected rms value and the mirror is now headed to Kitt-Peak, Arizona to be alu-

minized. The fabrication and polishing of M2 was completed by the Space Optics

Research Laboratory (SORL). SORL figured two M2 mirrors from the same parent,

one of which will be used as a back-up.

One of the benefits of NST's off-axis design is having an unobstructed pupil,

which eliminates scattered light and also enhances the AO system performance.

Another advantage of the off-axis design is that the prime focus is easily acces-

sible with no obstruction in the light path. The primary mirror will be mounted on

a set of 36 actuators, which will compensate for gravity and thermal effects. M2 will

be mounted on a hexapod system manufactured by Physik Instrumente, Germany

and can be positioned using the system to attain a linear and rotational accuracy

of +2 pm and +10 Arad, respectively. Figure 3.5 shows a CAD rendering of M2

mounted on the hexapod system with the heat stop in place.
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Figure 3.5 CAD rendering of the M2 mirror mounted on the Physik Instrumente
M-850 hexapod system (light gray) with the heat stop in place (courtesy of Jeff
Kuhn).

To help keep the relative alignment of M1 and M2 throughout the observing

period, a dedicated wavefront sensor mounted between M2 and M3 will be used.

Along with the wavefront sensor, polarization calibration optics, including linear

polarizers and wave retarders, will be mounted here as well.

Figure 3.6 shows the general optical layout of the wavefront sensor and the

set of polarization calibration optics as they will be mounted between M2 and the

optical flat M3. With a beam diameter of 96-98 mm just 400-200 mm before M3,

relatively large optical elements with diameters of about 100 mm will be required.
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Figure 3.6 CAD rendering showing the general optical layout of the wavefront sensor
and the polarization calibration optics (courtesy of Roy Coulter).

3.5 Heat Stop Assembly

The prime focal plane of NST will receive approximately 2,500 W of power giving an

irradiance of about 2.5 W mm-²  or 2.5 M W m-² . To dissipate this energy, the heat

stop shown from two different perspectives in Figure 3.7, which was designed and

built in-house at IfA, will be used. IfA developed a similar heat stop for the SOLAR-

C telescope so that integration of this component should be relatively seamless. As

the light gathering power of solar telescopes increases, the careful implementation of

a heat stop becomes a necessity. For the old 65 cm vacuum telescope at BBSO, the

heat stop dumped the waste beam in to the dome environment. Doing this for NST

would add most of the 2,500 W to the dome environment creating unwanted internal

seeing effects. The NST heat stop will absorb rather than reflect a majority of the

incident radiation and transfer the heat outside of the dome via a circulating chilled

fluid.
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Figure 3.7 CAD rendering showing the NST heat stop from two different perspec-
tives (Figure 7 in Denker et al. (2006)).

The designed pointing range of NST is up to 8' beyond either side of the solar

limb. The primary focus geometry is defined by both this pointing range of the

telescope and by the folded light paths at the secondary mirror M2. The prime

focal surface is shown in Figure 3.8 along with the pointing range of the telescope.

The outermost circle with a diameter of 81 mm defines the image zone within which

the full solar disk can reside. The reflecting surface of the heat stop will provide

a buffer of approximately 10 mm around this. Light that falls outside of this zone

will generate a signal triggering a safety measure. Centered on the image zone is

the prime focus field stop with a diameter of 3.8 mm represented by the small circle.

The three intermediate sized circles represents the full solar image of 36 mm at the

prime focal plane, centered and residing at both extremes. The waste light, i.e., light

that does not pass through the field stop, is reflected out of the optical path and

terminated at a beam dump. The amount of reflected light is negligible and will not

contribute to any internal seeing effects.
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Image zone (81 mm) Solar image (36 mm)

Field stop (3.8 mm)

Figure 3.8 Diagram of NST's prime focal plane. The outermost circle represents
the area within which the full solar disk can reside (Figure 8 in Denker et al. (2006)).

3.6 Optical Support Structure

All major components of the OSS were commissioned by DFM Engineering Inc. of

Longmont, Colorado. The company supplied the equatorial mount, primary mirror

cell, positioning actuators and mirror supports for Ml, telescope tube, control system

for OSS, mounts and mirrors for M3 through M5 and the handling equipment for

the primary. Figure 3.9 shows a Computer Aided Design (CAD) drawing of NST

from two different perspectives with some of the major components labeled. The

OSS weighs approximately 8.5 tons, imposing a larger load on the existing telescope

pier. In March 2007, the existing telescope pier was demolished and construction

of the new pier was finished by July of the same year. The new pier is designed to

carry the increased load as well as raising the height of the NST rotational axis to

the center of the new dome. Work for the pier and construction was commissioned

by NJIT's structural engineering group.

Initial plans for the OSS proposed by DFM consisted of an unbalanced system,

designed to account for the telescope pier's weight requirements. A balanced design
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Figure 3.9 CAD renderings of NST from two different perspectives. Not shown
in are the heat stop assembly, which is located at the primary focus before M2.
Also omitted is the flat Coudé mirror M4, which is positioned at the bottom of the
polar axis and serves to direct light down to the optical laboratory (courtesy of Roy
Coulter).

would have resulted in an OSS weighing 13 to 18 tons as a result of needing counter-

weights to balance the cantilever motion of the mirror cell and telescope tube. To

counter the unbalanced moments, DFM came up with a Declination drive system

(DEC), that consists of a declination drive arm, visible in the left panel of Figure 3.9.

The declination drive arm will be capable of supporting the extreme load imparted

by the telescope structure. To account for variations in the center of gravity about

the right ascension (RA) axis of the telescope, two movable 1/2 ton counter weights

(see right panel of Figure 3.9) housed in tubes will be used to compensate the offset.

The overall telescope mount design is based off of DFM CCT 1.3 EQ mount with a

modified, shortened fork.

The primary mirror cell shown in Figure 3.9 will have an active support con-

sisting of a 36 point axial and six point tangential actuators. The actuators will

serve to compensate for changing thermal and gravity conditions. To hold the pri-

mary in position, six of the actuators (three axial and three tangential) will be used.
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Figure 3.10 Light from the observing deck is directed down through the polar axis
of the telescope to the optical laboratory via the Coudé feed (Figure 4 in Denker
et al. (2006)).

The remaining 33 axial actuators will compensate for unwanted mirror deformities

and the remainder of tangential supports will provide small rotational corrections

to the primary. The secondary mirror and hexapod mount (shown in greater detail

in Figure 3.5) will be attached to the secondary tower along with the solar guider

and sunshade. The solar guider, used for pointing control, was developed in-house

and consists of a Sigma 70-300 mm zoom lens, which forms a 4 mm solar image

on a four-quadrant sensor. The sensor is mounted on a linear micrometer stage

allowing positioning of the telescope with sub-arcsecond accuracy. The central box

shown in Figure 3.9 will hold the Nasmyth bench, where all operating wavelengths

are available, as well as the polarization calibration optics and wavefront sensor. Not

visible in Figure 3.9 is M4, which will direct light down to the optical laboratory.

Figure 3.10 shows the Coude feed from the observing deck to the optical laboratory

where the post-focus instrumentation is located.
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3.7 Control Systems

To monitor and control NST operations a high-level Telescope Control System (TCS)

needs to be implemented. The NST TCS, developed in-house by NJIT and BBSO

staff and scientists, will provide robust operation of the entire telescope system. The

control system will need to be able to provide the following functionality:

Dome operations. All dome movement such as rotation, opening and closing the

shutter, tracking the telescope throughout observing time and adjusting dome

louvers.

Pointing and Tracking. Track the observing target throughout the required

observing period. Correct for target precession and atmospheric and gravity

induced distortions.

Active Optics. Control the actuators on the back and sides of the primary mirror

to correct for thermal and gravity induced deformities. Supply the necessary

adjustments for the alignment of the secondary and primary by controlling the

hexapod system.

Thermal Control. The temperature at the primary mirror, heat stop, secondary

mirror and various locations throughout the dome will be measured and used

to initiate active and passive cooling measures, i.e., dome vents and air knife

operation.

Science Instruments. Monitor status and operation of post-focus instruments

such as VIM and TRIM

To provide control to these important telescope functions the TCS was designed

as a distributed system rather than a monolithic system — with all telescope func-

tionality in one software package (Yang et al., 2006). Figure 3.11 shows the structure

of the TCS and the breakdown of the subsystems. TCS is controlled through a head
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Figure 3.11 NST operations are handled using the TCS. The system shown here
is split into multiple subsystems, each providing a a different function (Figure 2 in
Varsik and Yang (2006)).

quarter (HQ) computer that receives information from the various subsystems via an

ethernet link. The communication interface between all systems in the TCS is han-

dled using the middleware platform Internet Communication Engine (ICE), which

the control systems team decided was the most robust and appropriate software for

this application. Messaging and information exchange in the TCS is handled using

forms written in the eXtensible Markup Language (XML). Each of the major sub-

systems will have its own control computer and all extensive information on each

subsystem will be stored in a database to be used in refining telescope operations.

The telescope operators will issue high level commands through a graphical user inter-

face (GUI) — with the most of the low level functionality hidden. However, access to

the low level commands is still possible for cases involving subsystem maintenance

and failure recovery.
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3.8 Post-Focus Instrumentation

NST will benefit from both active and adaptive optics systems. The active optics

system includes the relative alignment between M1 and M2 as well as maintaining

the surface integrity of M1 in the presence of gravity sagging and thermal induced

expansions and contractions. The deformation of the primary due to gravity and

thermal variations will occur rather slowly. Therefore, these controls are grouped

as active optics even though the primary is adaptive. The active optics system will

rely on a dedicated wavefront sensor manufactured by Adaptive Optics Associates

(AOA) that is mounted on the OSS. The active alignment uses the DC-component

of the wavefront sensor to keep alignment between M1 and M2. The active system

will operate in both a closed- and open-loop system.

At the heart of the AO system for NST is a 76 subaperture Shack-Hartman

sensor operating in a closed loop with a 97 actuator deformable mirror. Both the

Shack-Hartman sensor and deformable mirror are manufactured by Xinetics. The

AO system is identical to the system at Dunn Solar Telescope (DST) at National

Solar Observatory/Sacramento Peak (NSO/SP), New Mexico (Rimmele et al., 2004).

The system uses a 1280 x 1024 pixel Baja Technologies 10-bit Complex Metal-Oxide

Semiconductor (CMOS) camera as a detector. The control software for the system

was developed at NSO/SP. Of the 1280 x 1024 pixels, only 200 x 200 are read in to

ensure a frame rate of 2500 frames s -1 . The AO system has been successful in use

with the 65 cm telescope at BBSO. However, to accommodate the NST operating

wavelengths, the design and development of a 350 actuator system is currently in

the works.

Along with the active and adaptive optics systems, NST will have several other

post-focus instruments. Two Fabry-Pérot-based imaging magnetographs - the Vis-

ible light Imaging Magnetograph (VIM) and the Infra-Red Imaging Magnetograph

(TRIM) - will be used for polarimetric studies of the Sun at various wavelengths
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in the visible and infrared (Denker et al., 2003a,b; Cao et al., 2006). A fast CCD

camera system used for image reconstruction complements the suite of post-focus

instruments (Denker et al., 2001a, 2005). Chapter 6 describes in further detail the

design, layout and operation of the AO system at BBSO. In Chapters 7 and 8,

an in-depth discussion of VIM and the results from a June 2006 observing run are

presented, respectively.

This aim of this chapter was to give an overview of the 1.6 m NST project

at BBSO. The project is well underway with the majority of components already

finished or on their way to completion. Alignment procedures for the telescope will

be tested and developed in the coming months as first light nears. The NST project

will not only have an impact in its contribution to solar physics, but will also serve

as a model for future large-aperture ground-based telescopes.



CHAPTER 4

THE THERMAL CONTROL OF THE NEW SOLAR TELESCOPE AT
BIG BEAR SOLAR OBSERVATORY

4.1 Overview

In this chapter the basic design of the THermal Control System (THCS) for the

1.6-meter New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO),

California is presented. The NST is an off-axis Gregorian telescope with an equatorial

mount and an open support structure. Since the telescope optics is exposed to the

air, it is imperative to control the local/dome seeing, i.e., temperature fluctuations

along the exposed optical path have to be minimized. To accomplish this, a THCS is

implemented to monitor the dome environment and interact with the louver system

of the dome to optimize instrument performance. In addition, an air knife is used

to minimize mirror seeing. All system components have to communicate with the

Telescope Control System (TCS), a hierarchical system of computers linking the

various aspects of the entire telescope system, e.g., the active mirror control, adaptive

optics, dome and telescope tracking, weather station, etc. An initial thermal model

of the dome environment is presented as well as the first temperature measurements

taken in the recently replaced BBSO dome.

4.2 Introduction

Some of the most favorable conditions for solar observations occur at observatories

that are situated above the inversion layer and are surrounded by a body of water

(Beckers, 2001). BBSO is situated at such a site and is the location for the con-

struction of the NST. The NST is set to replace the existing 65 cm vacuum telescope

with a 1.6 m aperture, open support structure, Gregorian-style solar telescope. Upon

completion NST will be engaged in campaign style observations of the Sun joining

52
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the next generation of large-aperture, diffraction-limited solar telescopes. Its capa-

bility of performing both high-temporal and high-spatial resolution studies of the

Sun will enable the NST to engage in a host of scientific studies including, but not

limited to, high cadence solar flare dynamics, active region magnetic field evolution

and structure as well as upper solar atmosphere heating (Goode et al., 2003). For

large-diameter solar telescopes operating at the theoretical diffraction limit, one of

the main design issues besides the polishing of the primary, is the development of an

advanced THCS (Goode et al., 2003).

The THCS is responsible for reducing the effects of local convection that arise in

the dome as well as controlling the temperature of the mirrors to match the ambient

temperature. In an effort to accommodate the NST open-structure design, BBSO

recently replaced the existing observatory dome with a new 5/8 sphere ventilated

dome. Passive flushing of the dome interior is achieved through 14 louvers that are

evenly spaced around the perimeter of the dome. The wind characteristics at BBSO

(Denker and Verdoni, 2006) is westerly with an average speed of approximately

6 m s'. This is sufficient for flushing the open structure of telescope reducing some

of the deleterious effects of enclosure related seeing on image quality. The ability

to make large-aperture solar telescopes with an open design and still operate at the

theoretical diffraction limit viable stems from recent advances in solar AO technology

(Rimmele et al., 2004). NST will benefit from the recently developed high-order

AO system, frame selection and speckle masking technology that has already been

implemented using observations with the 65 cm vacuum telescope (Denker et al.,

2005).

The open telescope design is not unique to NST, it has been implemented

successfully at the DOT on La Palma and is also the choice configuration for other

solar telescopes such as GREGOR and the ATST. Along with an open optical support

structure both DOT and GREGOR have retractable domes exposing the telescope
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optics to the surrounding environment. In the case of DOT the characteristic winds

at La Palma effectively suppress thermal plumes associated with local ground heating

(Rutten et al., 2004). The open structure of DOT allows for the wind to enter the

telescope structure deterring the build up of internal telescope seeing. The proposed

ATST at Haleakala- , Maui, Hawaii, will also use an open structure to house its 4 m

primary. However, ATST will not use a retractable dome but rather a ventilated and

cooled enclosure, that has been designed and optimized using software that applies

site survey data to a CAD-generated enclosure model (Dalrymple et al., 2004). An

aerodynamic method is applied and the results, coupled with measured wind and

temperature data, are combined to give a temperature distribution on the dome

surface.

The open structure design of NST will require both passive and active thermal

control to reduce enclosure related seeing and ensure high quality diffraction-limited

observation (0.07" at 500 nm). In the following sections, the fundamental charac-

teristics of the NST dome as well as an overview of the THCS are discussed. Along

with the dome characteristics, some preliminary temperature tracking data from a

16 point temperature measurement taken in the new dome is presented.

4.3 Dome Design

The newly installed dome at BBSO is a 10 m diameter, 5/8 sphere with an over

the top nesting shutter housing a 2 m circular aperture. The dome was manufac-

tured by MFG Ratech and is modelled after the dome constructed for the Southern

Astrophysical Research (SOAR) telescope (Teran et al., 2000). The SOAR dome is

a 20 m diameter 5/8 sphere, with a similar over the top shutter with windscreen

attachment. The exterior is comprised of an insulated fiberglass panel system that

is assembled in sections. The dome rotates on a 16 fixed point bogie system allowing
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Figure 4.1 Image of new NST dome (MFG Ratech) dome with insert of foam core
material

for the dome, shutter and windscreen to track the telescope for maximum protection

against prevailing winds.

The spherical shape of the the new dome was a natural fit for NST as it did not

require major modification of the existing observatory structure. The spherical shape

also lends itself nicely to the dome ventilation system by eliminating the presence

of dead air space inside the dome volume (Teran et al., 2000). The dome consists

of a metal frame support structure surrounded by white insulated fiberglass panels.

The panels are insulated with a special foam core that provides added stability as

well as insulation to the dome. Figure 4.1 shows the newly installed NST dome with

the recently constructed Earthshine observatory, the inset image shows the foam core

insulation. The dome shutter is an over-the-top type shutter that separates the dome

into two even sections. Attached to the shutter is a windscreen so that the dome

interior is only exposed via the 2 m aperture during observation. The determination

of the slit width was based on assembly criteria. Namely, the width of the slit must
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be able to accommodate the largest telescope component that would be lowered into

the observatory by a crane. The largest component being the support ring for the

primary mirror yielded a slit width of 2.5 m to provide suitable clearance during

NST installation. Also the slit width must be able to adequately accommodate

the primary mirror when it needs to be re-coated. Another consideration for the

telescope aperture was the amount of excess sunlight entering the dome, which has

to be minimized to avoid heating of the telescope support structure. To determine

the minimal aperture diameter, the case of off-pointing the telescope to the solar

limb was considered. For a clear aperture of 1.6 m at the telescope primary and

assuming a circular aperture roughly 5.5 m above the primary maintaining uniform

illumination of the primary would require an aperture diameter of 1.65 m. When one

considers the tracking accuracy of the dome and shutter a value of 2.0 m is suitable

for the telescope aperture, ignoring in this case the small field angle of the telescope.

With the primary mirror being 1.6 m in diameter, an annulus of sunlight 0.2 m

in width and an area of roughly 4 m² will heat the telescope structure and dome

floor. This corresponds to a solar load of roughly 6 kW, which has to be managed

by THOS. To measure the solar load, photometers will be mounted on the optical

support structure.

Unlike the SOAR dome the NST dome has 14 vent gate assemblies evenly

spaced around the perimeter of the dome to allow for wind flushing of the dome

interior. The vent gates are constructed of heavy gauge extruded aluminum rated to

withstand a wind load of approximately 190 kg m -2 or a wind speed of 57 m s-¹ . The

vent dimensions are 0.6 m x 1.8 m with a depth of approximately 0.1 m. Each of the

vents is outfitted with a damper or set of louvers, which control the amount of air let

in and out of the dome. The louver assembly is split into a top and bottom portion

that can be opened and closed independently. The dampers will be controlled via

the telescope pointing and tracking subsystem and will be activated based on the
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Figure 4.2 From left right the inside and outside of one of the active vent gates.

direction of the wind, measured by a weather station outside the dome, and the

distribution of the internal dome temperature as measured by 16 temperature probe

units arranged symmetrically throughout the dome interior (Denker et al., 2006).

Figure 4.2 shows a picture of the inside and outside of one dome louver. Visible

in the figure are the two motors responsible for opening and closing the top and/or

bottom portion of the vent louver system.

With a diameter of 10 m the total volume of the dome is approximately 330 m 3 .

This volume will need to be flushed approximately 20 or more times per hour corre-

sponding to a wind speed of roughly 2 to 3 m s-¹ . Data taken from the comprehensive

ATST site survey shows that the mean wind speed at BBSO is 6 m/s with a wind

speed of 9 m s-¹  10 percent of the time (Denker and Verdoni, 2006). For

cases, where the wind speed is greater than 5 m s -¹ , the dampers will be used to

regulate the flow to the desired amount. In the case, where wind speeds are too low,

forced air will be used to generate a flow such that a flushing rate of 30 dome volumes

per hour is achieved. In addition, the wind flow can be directed depending on the
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louver position to stream across the face of the primary mirror. At astronomical

noon, when the mirror face is at its lowest position, it may be useful to only open

the bottom portion of the utilized louvers. Currently experiments involving different

louver configuration schemes are being explored and will implemented into THCS.

4.4 Thermal Control System

Considerable work has been done to understand and combat seeing and seeing related

effects in solar and nighttime telescopes. In their enclosure-seeing report the ATST

thermal systems group describe the types of thermal convection that arise in ven-

tilated domes (Dalrymple et al., 2004). For ventilated domes with a passive louver

system installed such as in the NST dome, there are several convective effects that

lead to enclosure related seeing. The most dominant form is the convection arising

from exterior dome heating. There is little that can be done to combat this effect,

however natural cooling from moderate to high speed winds can lower the outside

dome temperature and reduce the buoyant convection driven plumes due to the

heated dome exterior. NST will not implement any active measures to control the

natural convection from the dome shell heating such as air conditioning and or shell

temperature regulation. The idea is to restrict convection to the forced regime, this

corresponds to the least impact type seeing in the enclosure (Dalrymple et al., 2004).

The NST will have an open telescope design. Therefore, temperature fluctuations

along the optical path have the potential to severely limit the telescopes perfor-

mance. To regulate this effect the NST will require an advanced THCS to ensure

that image degradation resulting from thermal convection effects is minimized. The

THCS subsystem is part of the hierarchical Telescope Control System (TCS) and will

in general, be responsible for all seeing related issues. This involves communication

with several seeing related instruments and web services. Figure 4.3 shows the flow

chart for NST THCS and all of the related instruments and services . The abbrevi-
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Figure 4.3 Thermal control flow chart for NST.

ations Ml, M2, correspond to the primary and secondary mirrors respectively and

OSS refers to the Optical Support Structure. Below is a list of these instruments and

services accompanied by a brief description of how they will be used in the overall

THCS.

Weather Station: Weather data will be collected using a Davis Instruments

Vantage Pro2 Plus weather station. This instrument will measure temperature, rain

fall, wind speed and wind direction. The unit is equipped with a solar radiation

sensor as well as a UV sensor. THCS will use the temperature, wind speed and wind

direction data from the weather station to determine the proper louver configuration.

This will be performed by comparing the temperature outside (ambient temperature)

with the internal temperature of the dome as read by the ethernet/internet tracking

thermometer described below.

Web Services: On top of data from local instrumentation, weather data will

be collected from online sources before and during daily operations. For instance,

forecast data on wind speed and direction at various altitudes as well as other useful

environmental related parameters are provided every six hours by the National

Center for Environmental Prediction (NCEP, http: //www.ncep.noaa.gov/) . All

of the data related to both the thermal control and seeing will be archived in a
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single database developed in MySQL. The data will be used in a seeing forecast

model allowing the telescope operator to schedule observations that best fit the pre-

vailing seeing conditions. Since the lake level can vary seasonally and during times of

drought, a model that calculates the exact length of segments along the line-of-sight

that traverses the lake (Denker and Verdoni, 2006). Lake level data is provided by

the Big Bear Municipal Water District (BBMWD, http://www.bbmwd.org/)  and the

lake contours have been collected and digitized from various, commercial topographic

maps.

Ethernet/Internet Thermometer and Temperature Probes: Temper-

atures are measured by a TempTrax Model E16 ethernet/internet ready tracking

thermometer. This unit can monitor up to 16 temperature probes placed at var-

ious positions on throughout the dome interior. It has an accuracy of 0.5° C from

—29° C to +49° C with a resolution of 0.1°. The tracking thermometer accepts 16

heavy-duty thermo-resistor based temperature probes that are attached to a 25 m

PVC insulated wire cabling. Determining the most effective placement of the probes

is currently being studied. Each of the 16 probes will be temporarily mounted at

fixed positions on the interior dome surface and the temperatures will be measured

for several weeks. Figure 4.4 shows a picture of one of the probes fixed to the inside

of the dome via an adhesive cable clip.

Decision Module: The THCS objectives are twofold: (1) gather seeing,

climate and environmental data from a variety of sensors, instruments and web

resources and (2) assemble these data into information, which can be requested

by other subsystems or send requests to these subsystems to perform actions, which

will help to optimize the telescope performance. The communication interfaces (Yang

et al., 2006) are based on the Internet Communication Engine (Ice) as middleware

and the messages are passed between subsystems and a centralized "headquarter"

(HQ) computer as ASCII templates written in the eXtensible Mark-up Language
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Figure 4.4 TempTrax heavy-duty probe mounted on NST dome interior.

(XML). The decision module builds and updates a three-dimensional temperature

model of the temperature profile inside the dome. An adaptive merit function will

be used to minimize temperature gradients in the dome and keep the air tempera-

ture inside the dome close to the exterior values. The 14 dome louvers and forced

air ventilation can be used for this purpose. In addition, air flow and tempera-

ture through the Ml and M2 air knifes can be controlled. However, only a very

small correlation with the climate and atmospheric seeing conditions in case of the

airknifes is expected. Since telescope performance is difficult to quantify without

precise information on the prevailing seeing conditions, a seeing monitor has been

integrated into THCS (Denker and Verdoni, 2006). One of the seeing monitors used

in the ATST site survey was made available by the ATST project (Beckers, 2001; Hill

et al., 2004a). This instrument will be mounted on an instrument platform attached

to the south wall of the observatory building. The seeing data in connection with

NST wavefront sensor and climate data will be integrated in the decision process.

All data will be collected in a MySQL database so that a benchmark for optimal

thermal control of the dome environment can be established. The decision module
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will further provide warnings and error messages in case of instrument failure, e.g.,

if the coolant temperature of the heat stop exceeds a critical threshold, HQ will be

notified and the telescope is brought into a fail safe mode pointing away from the

sun to prevent damage.

Cloud Camera: One of the shortcoming of the ATST site survey was the

relatively large uncertainty of the clear-time fraction for all sites (e.g., 47% to 71%

for BBSO depending on the interpretation of the instrument health status) (Hill

et al., 2004a). This motivated the inclusion of an inexpensive, dedicated web camera

into THCS. The CCD camera is equipped with a "fish eye" lens and takes images

of the entire sky at a cadence of about 5 min. An automated program detects

clouds in these images and computes the cloud cover. The temporal evolution of

the cloud cover will be archived and becomes part of the seeing forecast model.

Long-term measurements of the cloud cover can reliably establish the clear-time

fraction. In addition, the observer will receive warning messages, if the cloud cover

increases/reaches a certain threshold or rain starts to fall. This warning message

relies also on information provided by the weather station's rain sensor.

Seeing Monitor: The Seeing Monitor is comprised of S-DIMM and ShaBar

instruments. These instruments were developed for the ATST site survey to measure

seeing characteristics and sky brightness at candidate sites (Beckers, 2001; Lin and

Penn, 2004). These instruments will be installed at the south side of the observatory

on an existing spare instrument platform. Seeing information will also be made

available from the by products of speckle masking imaging (Denker and Verdoni,

2006).

4.5 Experiments

In January 2006, the first set of 16 temperature sensors were installed on the interior

surface of the fiberglass dome. At this time, the dome structure, skin, and louvers
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Figure 4.5 Quick-look GUIs of the temperature sensors. (left) Location and num-
bering scheme of the 16 temperature sensor. (right) A temperature sample obtained
at 18:36:47 UT on February 14, 2006. The rainbow color code corresponds to low
(blue) and high (red) temperatures. The rings A, B and C denote increasing heights
of the temperature sensors. The entrance aperture (pointed towards North) is at the
top of the images.

were already installed. However, the dome drive and shutter motors were not oper-

ational. The dome aperture was pointed towards the North to enable access to the

construction area inside the dome. Figure 4.5 displays the quick-look graphical user

interfaces (GUI), which provides feed-back from the temperature sensors. The left

panel of Figure 4.5 shows the location and distribution of the sensors. A denotes the

lowest position in the dome, i.e., the middle of the first ring of fiberglass panels. B

and C correspond to the middle of the second and third ring, respectively. The B

ring is roughly at the height of the primary mirror and contains the dome louvers.

The right panel of Figure 4.5 summarizes a set of temperature measurements for

all 16 sensors. The temperature differential is encoded in a rainbow color scheme.

Temperature measurements were made every 5 s and the GUI is updated at the same

time. The telescope operator can thus have an immediate and intuitive feedback of

the temperature distribution in the dome interior. The GUI is flexible to allow the
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Figure 4.6 Temporal evolution of the temperature profile for selected sensors. The
data was obtained at a 5 s cadence during three days in January 2006.

display of other information, e.g., the difference to the exterior temperature or the

temperature increase, since the observing started.

4.6 Conclusions

Controlling the dome environment is one of the crucial tasks in the operation of

modern solar telescopes with open designs. In this chapter the general ideas of a

THCS which will be used with the NST are presented. Preliminary results indicate

that strong temperature gradients exists within the dome. Daily temperature changes

exceed 10° C during the winter months. The temperature differences between day

and night are even larger during the summer month. Thermal studies will be con-

tinued once there is full control over all dome functions (by mid-2006). Of particular

interest is an exact understanding of the louver settings, which will allow a smooth

air flow to be directed towards the primary mirror. Also of interest is combining

airknife and wavefront sensing data to determine a proper thermal cooling scheme
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for the primary mirror. The NST is assembled and undergoing the first round of

alignment test. In the subsequent one-year commissioning phase, integration of the

THCS subsystems and instruments will be complete as well as finalizing the decision

module.



CHAPTER 5

THE THERMAL ENVIRONMENT OF THE FIBER GLASS DOME
FOR THE NEW SOLAR TELESCOPE AT BIG BEAR SOLAR

OBSERVATORY

5.1 Overview

The NST is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount

and an open optical support structure. To mitigate the temperature fluctuations

along the exposed optical path, the effects of local/dome-related seeing have to be

minimized. To accomplish this, NST will be housed in a 5/8 sphere fiberglass dome

that is outfitted with 14 active vents evenly spaced around its perimeter. The 14

vents house louvers that open and close independently of one another to regulate and

direct the passage of air through the dome. In January 2006, 16 thermal probes were

installed throughout the dome and the temperature distribution was measured. The

measurements confirmed the existence of a strong thermal gradient on the order of

5° C inside the dome. In December 2006, a second set of temperature measurements

were made using different louver configurations. In this study, the results of these

measurements along with their integration into the THCS and the overall TCS are

presented.

5.2 Introduction

Solar telescopes with an aperture larger than 1 m face a variety of challenges, if

they want to achieve diffraction-limited resolution. Site selection is of primary con-

cern. In the context of the proposed 4-meter aperture ATST, significant efforts

were undertaken to identify the best site(s) for solar observations (Hill et al., 2004a;

Socas-Navarro et al., 2005; Verdoni and Denker, 2007). Big Bear Solar Observa-

tory (BBSO) was identified as one of three sites suitable for high-resolution solar

66
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observations. However, the seeing characteristics at BBSO — a mountain-lake site —

are quite different (Verdoni and Denker, 2007) from the two other mountain-island

sites Haleakala, Maui, Hawai'i (which was selected as the future ATST site) and

Observatorio Roque de los Muchachos on La Palma, Spain. The lake effectively

suppresses the ground-layer seeing and very good seeing conditions are encountered

from sunrise to sunset. This makes BBSO ideally suited for solar activity moni-

toring and space weather studies (Gallagher et al., 2002) combining synoptic with

high-resolution capabilities. These site characteristics and scientific objectives are

exactly what has motivated the design, development and now construction of NST

(Goode et al., 2003; Denker et al., 2006).

Since instrument seeing is a severe issue for solar telescopes, most high-

resolution solar telescopes were placed inside vacuum tanks. This approach, how-

ever, is no longer feasible for apertures larger than 1 m, since the entrance window

(or lens) would become too thick in order to withstand the vacuum. Therefore, the

next generation of solar telescopes has to rely on "open-designs", i.e., the optical

support structure and optics will be exposed to the elements. This in turn requires a

good understanding and control of the thermal environment in which the telescope

is placed. In a first set of papers (Denker and Verdoni, 2006; Verdoni and Denker,

2006), a description on how to integrate seeing measurements into the NST opera-

tions and introduced plans on how to implement the NST THCS. In this study, a

discussion in more detail is given on the THCS implementation, the design of the

fiberglass dome (a smaller version of the SOAR telescope dome (Teran et al., 2000),

a detailed weather record for BBSO, temperature measurements inside the dome

under varying observing conditions, and some implications for the thermal control

of the primary mirror, which is a 1/5-scale model for the 8.4-meter off-axis segments

of the Giant Magellan Telescope's primary mirrors (Martin et al., 2004).
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Figure 5.1 Left. Image of the new NST dome at BBSO. The smaller dome in the
foreground houses the Earthshine and Ha full-disk telescopes. In this image the
shutter is closed and the iris is covering the domes 2-meter circular aperture. Right.
Inside of view of the closed iris and the iris drive motors. The folded windscreen is
visible at the bottom of the iris.

5.3 5/8-Sphere Fiberglass Dome

The new NST dome at BBSO is a 10-meter diameter 5/8 sphere with an over-the-top

nesting shutter housing a 2-meter circular aperture. The dome was manufactured by

MFG Ratech and is modeled after the dome for the SOAR telescope in Cerro Pachon,

Chile (Teran et al., 2000). The SOAR dome is approximately twice the size of the

NST with a diameter of 20 m. It has a similar over the top shutter with windscreen

attachment. However, it does not have the 14 active damped louver assemblies,

which are evenly spaced around NST's equator. The exterior of the NST dome is

comprised of Fiberglass Reinforced Plastic (FRP) panels that are assembled in three

ring sections, which are vertically split into two hemispheres by the dome slit. The

sections are supported by two 10-meter diameter steel arch girders that serve as

guides for the dome shutter. Both the panels and arches sit on top of a 9.2-meter

diameter steel ring beam, which rotates on a 16 fixed-point bogie system allowing

the dome, shutter and windscreen to track the telescope for maximum protection

against the prevailing winds.

The left panel of Figure 5.1 shows the newly installed NST dome with the

aperture pointing to the east. In this image the dome shutter is closed and the iris
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covers the 2-meter circular aperture. Housed in the smaller dome in the foreground

are the BBSO Earthshine and Ho full-disk telescopes. The right panel of Figure 5.1

depicts an inside view of the closed iris. At the bottom of the aperture panel is the

collapsed, foldable wind screen. As the aperture panel raises and lowers, the wind

screen unfolds covering the exposed portion of the dome slit. To test the structural

integrity of the dome a stress analysis was performed. The analysis was based on

the maximum operating snow and ice loading conditions. The conditions call for

the dome to retain its structure with a snow depth of 1 m, an average dead load of

97 kg m-2 with a peak dead load of 195 kg m -² , and an ice thickness of 0.05 m. A

worst case stress analysis was performed with a peak dead load of 195 kg m -² and

a 55 m s- 1 wind acting simultaneously. The result was that the 10 m diameter was

in substantial conformance with the manufacturers requirements.

NST's 14 vent gates allow wind flushing of the dome interior. The gates are

made of a heavy gauge extruded aluminum, which is rated to withstand a wind load

of approximately 190 kg m -² . Each of the vents is 0.6 m x 1.8 m with a depth of

approximately 0.1 m. A damper is attached to each vent, which allows control over

the amount and direction of air flow through the dome. The dampers will be activated

based on the direction of the wind, measured by a weather station outside the dome,

and the temperature gradients inside the dome, measured by 16 temperature probe

units arranged symmetrically throughout the dome interior (Denker et al., 2006).

Figure 5.2 gives an image of the inside of the dome showing three vent gate

assemblies. The two motors responsible for opening and closing the vent louver

system. To eliminate the presence of a thermal gradient inside the dome, the dome

volume must be flushed 20 or more times per hour, which requires a wind speed of

approximately 2 to 3 m s -¹ . BBSO benefits from a predominately westerly winds

with a mean speed of 6 m (Verdoni and Denker, 2007). With a total dome volume

of 330 m3 , this is sufficient to achieve a flushing rate of 30 dome volumes per hour.
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Figure 5.2 The inside of the dome showing three of the active vent gate assemblies.
Visible on each of the vents are the two motors that adjust the damper settings.

In January 2006, the first set of 16 temperature sensors were installed on the

interior surface of the NST dome. A description of the Temp-Trax temperature

monitoring system including the probes and the corresponding control is given in

Chapter 4. At the time the temperature probes were installed, dome structure, skin,

and louvers were in place. However, the dome drive and shutter motors were not

yet operational and as a result opening and closing the louvers was not possible

at the time the probes were installed. A schematic of the dome with the louver

configuration is shown in Figure 5.3. The labels A, B, and C denote the three levels

of the dome from the bottom to the top respectively. The 14 louvers are marked in

black by the numbers 1 through 7 on the east and west portions of the dome. In

Figure 5.4 the evolution of the temperature inside the dome over a period of five days
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Figure 5.3 Schematic of the dome showing the location of the temperature probes
(blue text), louvers (black text), and the orientation of the dome during January and
December 2006 temperature probe experiments.
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Figure 5.4 The temperature recorded for five days in January 2006. The reddish-
orange, orange, and yellow solid lines represent the temperature recorded by probes
located at dome levels A, B, and C respectively. The dotted-dashed black line rep-
resents the temperature outside recorded by the weather station. The background
white and grey panels mark the location of sunrise and sunset respectively.

is shown. All of the louvers were closed and the dome was oriented with its aperture

pointing to the south. The reddish-orange, orange, and yellow lines correspond to

the probes that are located at dome level A (bottom), B (middle), and C (top)

respectively. The dotted-dashed black line indicates the temperature outside the

dome measured by the weather station. The temperature measured by each of the

probes is plotted over periods of day and night which are represented by the white

and dark-grey background panels. The largest difference in temperature read by

the probes occurs shortly after local noon and becomes the most pronounced in the
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Figure 5.5 The mean temperature (solid black line) of all 16 temperature probes
plotted with the standard deviation (dark grey). Sunrise and sunset are represented
by the light grey and white background panels respectively.

hours before sunset. Figure 5.5 a closer look at the dome temperature evolution is

shown. the mean temperature for all 16 probes (solid black line) plotted with the

standard deviation (dark grey). A maximum temperature gradient of 3.3° C (2 a)

occurs at approximately 17:30 UT. It is clear from the plot that during the night the

probes come closest to being in thermal equilibrium with each other with a minimum

standard deviation of +0.25° C.

5.3.1 Louver Experiments

In this section, the results of five days of temperature measurements taken while

opening and closing the louvers in the dome is discussed. It is important to note



Figure 5.6 2006 December 11, louver experiment.

that the NST was not present in the dome at the time the measurements were made,

and that there was a considerable amount of construction traffic moving in and out

of the observatory. To develop a realistic understanding of the temperature distribu-

tion in the dome, and consequently create an accurate proxy that will determine the

louver configuration, the temperature must be measured under normal observation

conditions with all systems present. Nonetheless, the five days of temperature mea-

surements with different louver configurations are important in determining if the

louvers position has any effect at all on the dome temperature.

By December 2006, control of the dome drive and shutter motors had been

integrated into the TCS. The next step was to investigate the effect that louver posi-

tion (open or closed) has on the internal temperature of the dome. The dome shutter

was closed as well as the iris, and the aperture position of the dome was set to point

west and remained in that position for the duration of the experiment. Figure 5.6
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Figure 5.7 2006 December 12, louver experiment.

shows the results of the first louver experiment conducted on 2006 December 11. The

y-axis is temperature in degrees Celsius and the x-axis displays the time in minutes.

The white and dark grey background panels correspond to all 14 louvers being in an

open or closed position, respectively. The dashed black line represents the outside

temperature as measured by the weather station and the color lines are the probe

temperatures. The average wind speed and wind direction for the times when the

louvers are in the open position are given in the light grey box at the bottom of each

plot. To get a rough idea of the height distribution of the temperature, a plot of

the probes in three groups corresponding to the three levels A, B, and C of dome

referring to Figure 5.3 is provided. The probes on level A are represented in the plot

on the top left, level B in the top right, level C on the bottom left, and in the bottom

right plot the mean temperature for all 16 probes is plotted over the standard devia-

tion. This format is used for Figure 5.6 through Figure 5.10 of this section. On 2006
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Figure 5.8 2006 December 19, louver experiment.

December 11, starting at 22:00 UT with all of the louvers open the temperature was

recorded for a period of three hours. The louvers were kept open for the first hour,

closed for the second hour and then opened for the third. A maximum temperature

gradient of 7.1° C occurs at 23:35 UT (louvers closed). The outside temperature

throughout the period of measurement remained fairly consistent at approximately

6.0° C with a discernable rise in temperature occurring at 23:30 UT. The yellow

line corresponding to probe 8 located at level C in the dome measures a noticeable

increase in temperature starting around 22:30 UT. This certainly effects the standard

deviation which is considered as a crude proxy for the temperature distribution. The

spike in temperature recorded by probe 8 could be a result of a number of factors.

Most likely is that a worker in the dome was in close proximity to the probe during

the time of measurement. That being said, there is only a modest change noticed at

all three levels of the dome with respect to the louver configuration. One can note
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Figure 5.9 2006 December 20, louver experiment.

however that the average wind speed throughout the first hour of the experiment was

approximately 2 m s -¹ below the characteristic wind speed experienced at BBSO.

In the final hour of the experiment the average wind speed increased to 6.8 m

at which point the thermal gradient decreased. Figure 5.7 shows the results of the

temperature measurements made on 2006 December 12,. The louvers were opened

and closed in intervals of one hour and average wind speeds through out the period

of measurement was considerably higher 	 4.67 m s") than that of the previous

day. The louver position has a more pronounced effect on the dome temperature,

with a maximum temperature gradient of 1.4° C occurring at 23:45 UT. It is also

evident that the outside temperature until approximately 22:00 UT falls with in (2a)

of the mean dome temperature.

The next set of probe measurements, shown in Figure 5.8 and Figure 5.9, the

louvers were opened and closed in intervals of 2 hours. The maximum temperature
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Figure 5.10 2006 December 21, louver experiment.

gradients for 2006 December 19, and 2006 December 20, are 2.9° C and 3.2° C, respec-

tively. They both occur at approximately the same time 23:40 UT. In Figure 5.8 a

minimal thermal gradient is seen to occur during the two hours the louvers are first

opened. The outside temperature is within (2a) of the mean dome temperature.

There is a clear increase in temperature at 21:00 UT when the louvers are closed.

When the louvers are opened again at 24:00 UT the winds speeds have decreased and

though the dome temperature decreases it does not reach the value of the outside

temperature as it had before 21:00 UT. In Figures 5.9 the dome temperature more

or less tracks the outside temperature which could be a resultof high average wind

speeds.

On 2006 December 21, the final temperature experiment was conducted.

Starting at 18:00 UT all 14 louvers were in the closed position. At 19:00 UT louvers

1 through 4 on the east facing side of the dome and louvers 4 through 7 on the



79

west facing side (refer to Figure 5.3) of the dome were opened with the remaining

louvers closed. At 21:00 UT louvers 4 through 7 on the east facing side of the dome

and louvers 1 through 4 on the west facing side of the of the dome were opened

with the remaining louvers closed. The wind speeds throughout the measurement

period varied considerably, with very low wind speeds 1.0 m s -¹ ) occurring from

19:00 to 21:00 UT and typical wind speeds of (~ 6.0 m s -¹ ) occurring from 21:00 to

23:00 UT. A maximum temperature gradient of 2.9° C occurred at approximately

21:00 UT. Looking at the evolution of the temperature gradient (2a) throughout the

measurement period a discernable reduction is seen to occur when the wind speed

increases.

From these experiments it is clear that the position of the louvers (open or

closed) has an effect on the temperature inside the dome. However, for an accurate

(quantitative) characterization it is imperative that measurements, such as the ones

presented here, be made during NST observing periods. It is also clear that the

higher the wind speed the faster the internal dome temperature measured at the

locations of the 16 probes approaches the outside temperature. More temperature

probes need to be installed at strategic locations inside the dome to get a more

precise view of the domes internal temperature distribution.

5.4 Meteorological Data

An accurate characterization of the meteorological conditions in the immediate sur-

roundings of an observatory is important for daily and seasonal operations of the

telescope. In February 2005, a Vantage Pro2 Plus weather station manufactured by

Davis Instruments (http: //www.davisnet . com/) was installed at BBSO to mon-

itor these conditions. The weather station is outfitted with an integrated suite of

meteorological instruments including solar radiation and UV sensors. Temperature

and humidity sensors are housed inside a radiation shield for improved accuracy. The
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Figure 5.11 Frequency distributions of the wind speeds vDay (left) and vNight (right).
The median, mean, and 10th percentile wind speeds are indicated by solid, dashed,
and dashed-dotted vertical lines, respectively.

weather station data presented in this section covers 741 days from 2005 February 28,

to 2007 March 10. The data was sampled at a 1-minute cadence with the exception

of the first 10 days, when a cadence was 5 min.

The frequency distributions of daytime (left) and nighttime (right) wind speeds

are shown in Figure 5.11. The median wind speed during the daytime is 4.67 m s -¹

with a mean of 4.27 m s -1 . The 10th percentile (6.87 m s-¹ ) of the wind speed dis-

tribution was computed to provide an estimate for high wind conditions. During the

night, the winds decrease in strength. The median, mean, and 10 th percentile wind

speeds are 1.38 m 5 -1 , 1.76 m s -1 , and 3.97 m s', respectively. The median, mean

and 10th percentile values for each of the distributions are represented by a solid,

dashed, and dashed-dotted vertical line in Figure 5.11. The two wind speed distribu-

tions clearly show different characteristics. Much higher velocities are encountered

during the daytime with a well-defined maximum between 5.0 and 6.0 m s -¹ . This

maximum is basically absent in the nighttime distribution, where a basically mono-

tonic decrease of the frequency of occurrence with wind speed is found. The physical

mechanism behind these discrepancies becomes more apparent in the frequency dis-

tribution of the directions (Figure 5.12).
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Figure 5.12 Left. Frequency distribution of the wind directions. Right. The median
wind speed as a function of the wind direction is shown as dark gray. The lighter grays
correspond to the 10 th and 30th percentile of the respective frequency distributions.

The east-west orientation of Big Bear Lake and its mountain location gives rise

to a unique distribution of wind directions. The relative frequency distribution of the

wind direction is shown in the left panel of Figure 5.14 for the entire data set. The

wind directions in the following plots are given on a the compass rose graduated into

16 sector. Immediately apparent is the predominance of westerly wind directions.

This westerly wind is a result of gradient in pressure between the Los Angeles basing

and the interior regions of the Southern Californian desserts (Verdoni and Denker,

2007). The winds are channeled through the canyons an valleys of the San Bernardino

mountains. Since the wind does not encounter any obstruction passing over the cold

waters of Big Bear Lake, the observatory island is embedded in almost laminar air

flows. The water also provides a "heat sink" effectively suppressing ground-layer

seeing. This is the explanation for the very good seeing conditions from sunrise to

sunset at BBSO.

A more quantitative picture of the wind speeds as a function of wind direction

is presented in the right panel of Figure 5.12. Here, the gray scale corresponds (from

dark to light) to the median, 10th and 30 th percentile of the frequency distributions,

respectively. For a westerly wind a median wind speed of approximately 6.0 m

is measured with winds of 8 m s -¹ or greater occurring 30 percent of the time. For
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Figure 5.13 Frequency distribution of the daytime wind directions (same format as
Figure 5.12).

easterly wind directions, the speeds are comparable to westerly winds. These winds

are caused by a reversal of the pressure gradient and are commonly referred to as

Santa Ana winds (Hu and Liu, 2003). A detailed discussion of the daytime seeing

characteristics at BBSO was presented in an earlier study (Verdoni and Denker, 2007)

based on data from the ATST site survey. However, due to the nature of the daytime

seeing monitor no nighttime weather data was available. Since nighttime observations

might be scheduled for NST and the fact that BBSO has an existing program for

Earthshine observations (Montañés-Rodriguez et al., 2005), a presentation of the

respective nighttime weather data is also presented in this study. These data also

further illustrate the two different observing regimes for day and night (Figures 5.13

and 5.14).

Separating the daytime and nighttime frequency distributions shows an even

more pronounced east-west orientation of the winds during the day. It also shows that

Santa Ana conditions do not very frequently occur (about 10% of the time). However,

even under these conditions the seeing can be very good (Verdoni and Denker, 2007)

but the observing conditions suffer from a low sky transparency due to dust carried in

from the deserts. The wind speeds are very similar (about 6.0 m s-¹ ) for winds from

the East and West (see right panel in Figure 5.13. However, in the the north-south
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Figure 5.14 Frequency distribution of the nighttime wind directions (same format
as Figure 5.12).

Figure 5.15 Left. Seasonal and diurnal variation of median temperature. Right.
Seasonal and diurnal variation of median barometric pressure.

direction the wind speeds are reduced to about 1.5 m s -¹ . Figure 5.14 for reveals

the nighttime wind regime, which is dominated by mountain down-slope winds. The

air that has been heated during the day, now slowly flows down the mountain slope

towards the cool surface of the lake. With the exception of the southern mountain

slopes, there is no preferential direction for the down-slope winds but the wind speed

distribution again follows the east-west orientation of Big Bear Valley. Consulting

the wind speed distributions in Figure 5.11, low wind speed times v < 1.0 m s'

occur during a significant fraction of time. This happens typically around dusk and

dawn, when the change between the daytime and nighttime wind regime takes place.



Figure 5.16 Left. Seasonal frequency distributions of the humidity. Right. Diurnal
frequency distributions of the humidity. The gray scale (from dark to bright) corre-
sponds to humidity levels of 20%, 40%, 60%, and 80%.

Figure 5.17 Left. Diurnal and seasonal variation of the solar radiation spanning
the entire data set. The white contour lines refer to sunrise, local noon, and sunset.
Right. Schematic overview of the main TCS components. The system components of
the THCS and Telescope Pointing and Tracking System TPTS, which are responsible
for controlling the NST thermal environment, are shown on the right.

In Figure 5.15, the seasonal and diurnal variations of the median temperature

(left) and median barometric pressure (right) are shown as gray scales. The hottest

month is July, when median temperatures reach about 25° C. The temperature spread

between day and night is also much large during the summer months (about 10° C

compared to 7° C in the winter). The warm temperatures in February might be an

anomaly, since the data sample presented only covers slightly more than two years.

The barometric pressure shown in the right panel of Figure 5.15 is basically inversely

proportional to the temperature. The lowest values of the barometric pressure are
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measured throughout the summer months. The diurnal variations are more or less

negligible. However, a small trend to higher barometric pressure can be observed

around dusk and dawn, when transitioning from the daytime to the nighttime wind

regime and vice versa. The seasonal trend of the barometric pressure is given by the

pressure gradient between the coastal regions of Southern California and the inland

deserts.

The seasonal (left) and diurnal (right) distributions of the humidity are shown

in Figure 5.16. The gray scale corresponds (from dark to bright) to humidity levels

of 20%, 40%, 60%, and 80%, respectively. The winter months and early spring is

the most humid time of the year. Surprisingly, only a weak indication is found (in

July) for the monsoon season in July and August. Again, the explanation for this

behavior is in the diurnal changes of the humidity. Shortly after sunrise, the air dries

out and becomes least humid around local noon. With decreasing solar input in the

afternoon, the humidity increases monotonically. This trend continues after sunset.

The most humid time is reached just before sunrise. The high humidity during the

night and dawn might cause problems for nighttime and Earthshine observations.

The weather station also included a solar radiometer. The left panel of

Figure 5.17 displays the diurnal and seasonal variations of the solar radiation from

which the CTF was computed. The solar radiation is displayed on a rainbow color

scale, where violet corresponds to low light levels and orange/red refers the maximum

of the solar radiation at noon in the summer time. Solar ephemeris computations

including optical air mass were obtained from the Jet Propulsion Laboratory (JPL)

Horizons web page (http://ssd.jpl.nasa.gov/horizons.cgi) to aid in the anal-

ysisGiorgini et al. (1996). The ephemeris data were converted from Universal Time

(UT) to Pacific Standard Time (PST, without daylight savings time correction) to

match the weather station data. The three white lines (from bottom to top) refer

to sunrise, local noon, and sunset, respectively. Especially in the winter and spring,
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entire days with low light levels are recorded. These times are during winter storms

and when the sky is overcast. The monsoon season is also visible in the left panel

of Figure 5.17 during the months of July and August, when the daily radiation

traces become spotty about two hours before local noon. During the monsoon the

moist air and solar heating can give rise to severe thunderstorms. A threshold of

90% of the instantaneous solar radiation is used to compute the CTF. Since this

fractional criterion becomes impractical for elevations lower than 5°, only the CTF

is computed for higher elevation angles and this value is extrapolated to the entire

data set. The CTF determined from the solar radiation sensor of the weather station

is 72.4%. This value agrees well with CTF value from the ATST site survey (71.2%,

Hill et al., 2004a) and previous measurements obtained as part of the GONG site

survey (70.7%, Hill et al., 1994).

5.5 Thermal Control System

The THOS (Verdoni and Denker, 2006) is part of a distributed computer system,

which controls the telescope, dome, AO, and the post-focus instrumentation. The

overall system is known as the TCS (Yang et al., 2006). A schematic overview of the

TCS is shown in the right panel of Figure 5.17. Use of a distributed system allows

for greater flexibility, and ultimately for greater simplicity than a monolithic design

would provide. As a consequence, each subsystem within the TCS has only a limited

set of tasks to perform.

Overall management of the TCS is carried out by the HQ program running

on a dedicated main control computer. HQ collects data from each subsystem for

centralized logging and access by the main user GUI systems. Commands are sent

from the GUIs to HQ for dispatch to the appropriate TCS system for execution.

Each subsystem has an engineering GUI written in Java. In general, C++ and Java

are the only languages used in the control system. The object-oriented TCS design
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has so far resulted in a successful implementation of all subsystems and significantly

shortened the design and development time (Shumko and Yang, 2006). Even though

status information is provided by HQ to science instruments, they are currently not

considered part of TCS. Instrument designers have to rely on well-defined interfaces

implemented in XML to integrate the post-focus instruments in the hierarchical TCS

infrastructure.

Communication within TCS is performed by Ethernet, which offers much better

performance compared to older RS-232-based implementations and simplifies cabling

to the telescope. Ice from ZeroC was chosen as the standard communication

pro-tocol/software library. User interaction with all subsystems is handled by a system-

wide main GUI, which accesses the subsystems through HQ. The HQ computer is

also performing logging and archiving of status information, which is collected in a

data base.

All high-level commands are written in XML. Commands, information requests,

notifications, or error messages can be sent asynchronously. Fast network connec-

tivity and generally short messages make the overhead of ASCII formatting negligible

and does not result in any significant impact on overall performance. Processing of

XML messages is trivial, since there are many ready-to-use libraries in both Java and

C++. Ice also allows seamless integration various operating systems (e.g., Windows

XP and Linux), which are installed on the various subsystem control computers.

Subsystems access and control hardware directly or through off-the-shelf Ethernet-

based controllers. For example, Galil multi-axis controllers are used with the servo

motors for dome rotation and dome shutter operation. Another, example are the

TempTrax Model E interfaces for the temperature probes throughout the dome,

which communicate via a built-in web server.

While THCS monitors temperatures within TCS, THCS also closely interacts

with the Telescope Pointing and Tracking System (TPTS, Varsik and Yang, 2006),
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which handles the movement of the telescope and dome. TPTS also provides a

wrapper for the telescope mount software provided by the telescope manufacturer

DFM Engineering, Inc. One of the TPTS challenges is the alignment of the relatively

small dome opening with the optical axis of the telescope. An algorithm is used to

find the position required for the dome so that the aperture is in the correct place

aligned with the telescope beam, allowing for the offsets between the pivot point of

the telescope mount, the center of the telescope light path, and the center of the

sphere of the dome. The dome shutter and azimuth drives are then moved so the

dome aperture follows the position of the light path during the day. TPTS also

controls the dome louvers.

The primary THCS objective is to provide a stable environment for NST's

main optical components, which are located inside an open telescope support struc-

ture. Therefore, the temperature of the optical support structure and primary and

secondary mirrors has to be closely monitored. The surface of the primary mirror

can be actively cooled by regulating the air flow and temperature by using a fan

driven heat exchanger. The fan will provide a laminar flow across the mirror surface,

thus avoiding the rise of turbulent eddies from the sunlit mirror surface. The only

way to keep the temperature of the telescope structure and other optical components

close to ambient is to effectively ventilate the dome and limit the amount of sunlight

entering through the dome aperture by making it as small as possible. The radius of

the dome aperture is only 20 cm larger than that of the primary mirror. To accom-

plish the first task, THCS automatically sends commands to operate the 14 dome

louvers through TPTS to adjust to variable wind speeds and directions during the

observing day. Real-time information from a weather station and from a network

of temperature probes inside the dome are used in a decision module (Denker and

Verdoni, 2006; Verdoni and Denker, 2006), which sends the appropriate adjustments

through HQ to the dome louvers.
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5.6 Thermal Control of the Primary Mirror

The thermal control of the primary mirror relies on two different mechanisms: the air

inside the dome has to track the outside temperature and an air knife that directs a

laminar flow of air across the Sun-facing primary mirror surface. Assuming that the

passive ventilation through the the louvers minimizes interior temperature gradients

and reduces internal dome seeing, sample temperature profiles can be used for winter,

spring, and summer to evaluate the thermal properties of the primary mirror under

realistic observing conditions.

Sample profiles for the four seasons are shown in the left panel of Figure 5.18.

These samples were created by averaging all available temperature profiles for the

respective seasons. The general shape of all profiles is roughly the same. A fast

monotonic temperature rise after sunrise, which reaches a plateau about two hours

before local noon. At this time, laminar wind flow across the lake and the lake

acting as a heat reservoir balance solar heating and an equilibrium is reached. This

plateau persists for up to 10 hours in the summer but lasts only about six hours

in the winter. This region of little or no change is not an artifact of the averaging

procedure but can also be found in individual daily temperature profiles. Exceptions

are days with extended cloud cover. However, since BBSO has more than 300 sunny

days per year, cloudy or rainy days only leave an negligible imprint on the averaged

seasonal profiles. In the late afternoon and early evening radiative cooling begins,

once the Sun sets behind the mountains to the West of the observatory, reaching

the coolest temperatures just before sunrise. Typical temperature spreads between

day and night are 7.3 K, 9.4 K, 10.3 K, and 9.0 K for winter, spring, summer, and

autumn, respectively.

In the right panel of Figure 5.18, two temperature profiles (dashed-triple-dotted

curves) for winter (gray) and summer (black) are used to illustrate how the Zerodur

primary responds to changes of the ambient temperature (dashed curve). Even
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Figure 5.18 Left. Average daily temperature profiles for winter (solid), spring
(dashed-dotted), summer (dashed-triple-dotted), and autumn (dashed). Right. Ml
response (dashed) to ambient air temperature variation (dashed-triple-dotted) during
the summer (black) and winter (gray) considering convective heat exchange only.
Initially (at midnight), M1 and ambient air temperature are the same. Their tem-
perature differences are given by the solid curves.

without direct exposure to sunlight, the thermal inertia of primary mirror leads to

a rapid departure from the ambient temperature. Once the temperature difference

exceeds about +1 K, mirror seeing becomes an issue and severely limits the perfor-

mance of a (solar) telescope.

In this introductory example, it is assumed that M1 and the surrounding air had

the same temperature at midnight. M1 then slowly follows the cooling trend of the

ambient air until about sunrise. In fact, it remains within the allowed 1 K tempera-

ture envelope for about 1/2 to 1 hour (summer/winter). This agrees with experience

gained at older (non-evacuated) solar telescopes, where observations with diffraction-

limited quality have been reported for short time periods just after exposing the

primary to sunlight. Of course, once these telescopes and their optics heated up, the

image quality rapidly deteriorated. The temperature difference between the primary

mirror and ambient air TM1¹ — Tair exceeds the desired 1 K envelope for most of the

observing day. In the morning, Ml is cooler by up to 6 K in the summer and 4 K

in the winter, respectively. In the late afternoon, the temperature difference reverses

sign and reaches values of 4 K in the summer and 2 K in the winter, respectively.
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Figure 5.19 Left. Lump capacity model of the primary mirror Ml with realistic tem-
perature profile Tait. (dashed-triple-dotted) and absorbed solar radiation gabs (solid
gray) during the summer months. The air temperature Tback (dashed) to convec-
tively cool the backside of Ml is changed every hour in multiples of 1 °C to minimize
the temperature difference Tarr — TM1 (solid black). The temperature difference has
been stretched by a factor of 10 to enhance the visibility of small-scale temperature
variations. Right. Data for winter months (same labeling as in left panel).

As expected, these effects are smaller in the winter than in the summer. The lag

of the time-delayed M1 response is about 4 to 6 hours and fine-structures of the air

temperature profile are smoothed out. Importantly, M1 now carries excess heat into

the next observing day, which would make maintaining the temperature difference

in the range of +1 K even more difficult. In the following, a more realistic scenario

is discussed, adding solar heating and active cooling of the primary mirror to the

model.

Starting with the average temperature profiles for summer and winter (see

Figure 5.19), realistic values for the absorbed solar radiation gabsabs are added to the

lump capacity model. It is assumed that the observing day starts at 7:00 am local

time in the morning and ends at 6:00 pm in the summer and 5:00 pm in the winter

(daylight savings time was not taken into account). Furthermore, the observing

days were completely sunny with no cloud cover. In principle, both radiation and

convection could be used as cooling/heating mechanisms for the primary mirror

Ml. Since both mechanisms follow the same formal implementation in the M1 lump



92

capacity model, only convective air cooling/heating of M1 is discussed here. In

addition, radiative cooling/heating would require a heat exchanger in close proximity

to Ml, which is not possible in the tight confines of the Ml support, which houses

the actuators for the Ml active optics.

Changing the air temperature Tback only every hour in multiples of 1°C, results

in the ability to keep the primary mirror within a few tenth of degree Celsius of

the ambient air temperature Tair. The rapid rise of the ambient air temperature

in the morning requires warming Ml by blowing heated air on the backside. Solar

loading by itself is not sufficient to bring Ml fast enough to the desired temperature.

The early morning presents therefore the greatest challenge for controlling the Ml

thermal environment. Since the backside air temperature Tback is almost 15 °C

warmer than the ambient air temperature Tair, it is essential the backside of the

primary mirror cell is tightly sealed to avoid an exchange of air. A similar but

inverted control challenge exists in the late afternoon, when Ml has to be cooled to

follow the ambient air temperature. However, the temperature differentials are not as

severe. As expected, the control requirements are much more relaxed in the winter

time, since the day/night temperature difference are much smaller and so is the

solar loading. If a predictive model of the daytime temperature exists, the thermal

control of the primary mirror becomes feasible. This is certainly the case for sunny

days. However, on partially cloudy days daytime temperature predictions become

a challenge and it might not be possible to keep M1 within the +1°C operating

envelope. On the other hand, the large clear time fraction at BBSO with more than

300 sunny days, allows to keep the primary mirror within the temperature margins

for most of the time.

One concern of the non-isotropic M1 heating/cooling is that the primary mirror

can become distorted as a result of thermal gradients. This distortion is proportional

to the coefficient of thermal expansion (CTE) of the mirror material. The CTE of
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Zerodur is a = 0.00+0.10 x 10-6 1< -1 from 0°- 50° C. The major effect is a dominant

axial thermal gradient resulting primarily in a focus error, which can be compensated

by changing the distance between the primary mirror and the secondary mirror

assembly, which is mounted on a hexapod. However, the actual thermal deformation

of the primary mirror will be more complex. This deformation has to be monitored by

a dedicated wavefront sensor, which also measures the slowly varying gravitational

mirror deformations. These data are fed to a control loop of the mirror support

system Yang (2006). The AO support of the primary mirror consists of 36 actuators

in three concentric circles (6, 12, and 18 actuators at r, = 21.8 cm, 49.1 cm, and

75.1 cm, respectively). Any residual gravitational or thermal deformations of the

primary mirror, which cannot be corrected by active optics, have to be compensated

by NST's AO system, which is based on the existing BBSO AO system for the now

obsolete 65 cm vacuum reflector (Denker et al., 2007).

5.7 Conclusions

Controlling the thermal environment of the next generation of solar telescopes will

be a major challenge considering the necessarily "open-design" of solar telescopes

breaking the 1-meter aperture barrier. The results of some initial studies to charac-

terize the BBSO site characteristics and the dome environment in which the future

NST will operate are presented here. The time-delayed response of NST's 10-cm thick

Zerodur primary mirror to changes of the ambient temperature requires a detailed

understanding of its thermal environment and active measures to keep the mirror

as close to the ambient temperature as possible. For example, daily temperature

predictions become important to determine the optimal temperature of the primary

mirror in the morning. An adaptive scheme to operate the dome louvers has to be

developed, which equalizes the air temperature inside and outside of the dome, while

avoiding wind-shake problems of the optical support structure, especially for the
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exposed outrigger that carries the secondary mirror assembly. The work presented

here has shown that NST can achieve its expected performance, even in the chal-

lenging daytime thermal environment. However, the results of the studies presented

here have to be confirmed and refined in the engineering first-light phase, which

is expected to begin in early 2009. Commissioning of NST (first-light) is expected

about 12 months later.



CHAPTER 6

OVERVIEW OF HIGH-ORDER ADAPTIVE OPTICS, AND
SPECKLE MASKING RECONSTRUCTION FOR THE NEW SOLAR

TELESCOPE

6.1 Overview

The open structure design of NST requires that careful attention is given to the

identification and remediation of local and dome related seeing. With favorable site

conditions at BBSO and an advanced THOS, the NST is poised to achieve diffraction-

limited observations of the Sun. To achieve its full potential, 0.065" resolution at

500 nm, NST will need to employ a high-order AO system along with frame selection

and a sophisticated post-facto image reconstruction technique. In Denker et al.

(2005), the combination of these three techniques were successfully employed to

generate high quality images of solar active region NOAA 10486 taken with the DST

at NSO/SP. Shortly after the DST images were acquired, BBSO was equipped with

its own AO system in January 2004 Denker et al. (2007). In this section an overview

of the AO system at BBSO is presented as well as a more generalized discussion of

frame selection and SMI.

6.2 Introduction

Modern large-aperture, ground-based solar telescopes have played and will continue

to play a pivotal role in advancing the scientific communities understanding of the

Sun. The need for large-aperture telescopes results from the fact that many of the

science drivers in solar physics today require high spatial resolution and light gath-

ering power particularly for spectropolarimetric observations. One example would

be to obtain direct observational evidence of the proposed kilogauss flux tube. This

would require the ability to achieve sustained diffraction limited observations with a

95
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Figure 6.1 Shown from left to right are, the long-exposure image, the short-exposure
reference image, and the reconstructed image of active region NOAA 10486. The
reconstructed image is a result of high-order AO, frame selection and SMI Denker
et al. (2005).

resolution of 50 to 100 km on the solar surface. Such an image scale requires that

modern solar observatories implement some form of image correction, either in-situ

or post-facto.

In Denker et al. (2005) examples of both in-situ and post-facto image correction

are given. Corrections that are in-situ would include implementation of correlation

tracking, spot tracking, and AO. Whereas post-facto image correction could consist

of reconstruction techniques such as phase diversity, speckle deconvolution, speckle

holography and SMI. Denker et al. (2005) takes this further separating the pro-

cess of image reconstructions in two categories. The first would be a near real-time

implementation of post-facto reconstructions using parallel processors as laid out in

Denker et al. (2001b). The second would consist of a combination of both in-situ and

post-facto techniques, which has successfully been shown by Scharmer et al. (2002),

where both AO and Joint Phase-Diverse Speckle Methods were used. For NST,

implementation of both post-facto and in-situ techniques will be employed. This

will specifically include AO, frame selection, and SMI. The AO system at BBSO

was successfully developed and deployed in January of 2004 for the 65-cm cm tele-

scope Denker et al. (2007). Figure 6.1 is a testament to the reconstructive ability
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of both post-facto and in-situ techniques. Figure 6.1 is a composite of three images

depicting active region NOAA 10486 as observed using the DST on 2003 October

29. NOAA 10486 was one of three active regions responsible for major solar flare

activity including an X28 flare on 2003 November 4, the largest flare recorded to

date. In Chapter 8, images of a quiet Sun region at disk center utilizing the same

reconstruction methods are presented. The left most panel in Figure 6.1 shows the

average of 100 short-exposure (400 ms) images. This is called a long-exposure image.

The middle panel of Figure 6.1 shows one of the short-exposure images. This image

has the highest granular rms-contrast and is used in computing both image and dif-

ferential image motion. The third panel in Figure 6.1 shows the result of AO, frame

selection and SMI. In the following sections of this chapter a generalized overview of

these methods are provided in more detail.

6.3 Adaptive Optics

In Beckers (1993) AO is defined as the removal of atmospheric distortions from a

wave-front using an optical component that introduces a controllable counter wave-

front distortion which follows the spatial and temporal evolution of Earth's atmo-

sphere. The general objective of an AO system is three fold: first to measure pertur-

bations of a given light beam, second to extract from these measurements a correction

signal, and third to apply this signal to an active optical element such as a deformable

mirror (Stix, 1989). The goal of AO for astronomical applications is to produce a

restored wave-front void of a majority of the perturbations induced by Earth's atmo-

sphere. Early AO systems were considered mainly for night time observations and

considerable efforts have been spent to develop AO systems for night time observato-

ries. Beckers (1993) credits Horace W. Babcock as one of the first to consider using

an adaptive system to compensate for atmospheric effects. In his 1953 paper, Bab-

cock (1953) states that compensation for atmospheric induced seeing and for mirror
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Figure 6.2 Left. The left most panel of this figure shows a proof of concept AO
set-up as presented in Babcock (1953). Right.The right hand side of this figure shows
how the modulated electron beam driving signal would be derived. Both of these
images are taken from Babcock (1953).

imperfections could be achieved if the means of measuring the deviation of rays from

all parts of the mirror could be done continually. This information he explains, would

then be fed back to "correct locally" the inherent imperfections in the optical image

that result from imperfections in the mirror as well as from atmospheric induced

seeing Babcock (1953).

In his paper Babcock describes a set of knife-edge photographs taken using the

200 inch mirror of the Hale telescopes. The photographs taken using a Leica camera

were intended not to understand how to correct for atmospheric effects, but to mea-

sure accurately deviations in the finishing of the 200-inch Hale mirror at Palomar

Observatory. Nonetheless, the images given in Bowen (1950) show the effects of the

atmosphere presenting itself as an erratic series of light and dark schlieren patterns

passing rapidly across the image of the mirror. Babcock postulates that these atmo-

spheric effects could be removed by placing a ray-controlling element in the conjugate

image plane of the primary (Babcock, 1953). Segmented deformable mirrors were not
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a technological realization at that time so Babcock suggested the use of an Eidophor,

a mirror coated with a thin layer of oil. The oil, acting as the surface of the mirror, in

the presence of an applied voltage would deform to a desired shape via electrostatic

forces. The inclusion of the Eidophor, deployed as a feed-back element, in knife-edge

schlieren imaging system could in effect measure and correct for atmospheric seeing.

The set up proposed by Babcock is shown in left panel of Figure 6.2. Light

from the telescope is collected by a Field lens (FL) and passes through a fast guiding

set-up (FG) used to keep the instrument centered on the star. The light is then

reflected from an Eidophor (ED) and brought to a focus on a rotating knife-edge

(RKE) instrument. The knife edge forms a schlieren image onto a detector, in this

case a photomultipier tube (PMT). The signal received by the PMT is then used

to modulate a signal that drives an electron beam which in turn creates the desired

mirror shape (Babcock, 1953). The left panel Figure 6.2 shows the full field being

imaged by lens (F) onto the Eidophor. The Eidophor reflects the light to a concave

mirror that that focuses the light onto a rotating knife-edge. The light is then imaged

on a photocathode tube which delivers an electronically integrated signal that serves

to modulate the intensity of the electron beam of the Eidophor (Babcock, 1953).

Babcock went as far as to invent an electronic integration method to be used.

The right panel of Figure 6.2 shows the proposed derivation of the Eidophor electron

beam signal. Deviations from a perfect image are detected from one scan of the

objective image. Figure 6.2a shows a single trace of the signal from the objective,

with x denoting the linear distance along the surface of the mirror. These deviations

are represented by z(x) which is a function of the distance along the surface of the

objective mirror. The intensity of the knife edge image of the trace is differentiated

and integrated to give the charge density which is used to drive the electron beam

of the Eidophor. The right panel of Figure 6.2 shows the current that is acquired

by integrating the intensity in z(x). The system proposed by Babcock is essentially
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Figure 6.3 Left. Two lenslet arrays and their alignment with the 19 element quad
cell. Right. Servo-loop for each of the 19 mirror segments. Both figures are from
Acton and Smithson (1992)

a proof of concept for the first generation of modern AO. These basic principles

of AO presented in Babcock (1953) have been expanded upon and are currently

being used in AO design. The first solar AO system, developed almost forty years

after Babcock's 1953 paper, is credited to John Hardy (Hardy, 1981). The system

consisted of a 21-actuator deformable mirror and a shearing interferometer to detect

and determine wavelength abberations.

The initial system, installed at NSO/SP for use with the 76-cm DST, used

small-scale solar features such as pores as wave-front sensor targets. The system

was successful, however showed only a modest improvement in image quality and

worked over a relatively small area of the image. By 1991, D.S. Acton and R.C.

Smith had developed a 19-segment adaptive mirror system also deployed at the DST.

The system worked in the visible part of the spectrum, improved image resolution

by approximately 9 times in 3" seeing conditions, and provided correction over a

30" diameter FOV (Acton and Smithson, 1992). To measure the wave-front error
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a Shack-Hartman wave-front sensor (SHWFS) consisting of two 19-element lenslet

arrays that image a high contrast solar feature onto an array of 19 quad cells. Each

quad cell is linked to a single mirror segment in a servo-loop control configuration as

shown in Figure 6.3. The quad cell is a photo-detector that is divided into four equal

square regions. The feature of interest, a solar pore, is centered on the quad cell and

an error signal is computed by taking the differences in intensity between different

quadrants. Generating the error signals, Ox and Δy, is carried out by taking the

difference between the left and right quadrant cells for Ax and the top and bottom

quadrant cells for Ay. The signals are digitally integrated and used to drive the x

and y-components of the mirror tilt. Figure 6.3 shows both the lenslet arrays, quad

cell and servoloop block diagram.

The limiting factor of the system was that it used pores or other small-scale high

contrast solar features to lock the system, greatly restricting the range of scientific

applications. To overcome this limitation the quad cell based SHWFS was replaced

with a correlating SHWFS. In Rimmele et al. (1999), a correlating SHWFS solar

AO system is described. The principle of operation for the correlating SHWFS is

described in Rimmele and Radick (1998). This type of AO system is currently in use

at the DST and subsequently has been successfully built and implemented at BBSO

Denker et al. (2007). The system is very similar to the one presented in Acton

and Smithson (1992), with one of the key differences being the use of a correlating

SHWFS rather than the quadcell. A correlating SHWFS works by calculating the

cross-correlation between a selected subaperture image (reference) and the remaining

subaperture images. In the current DST and BBSO AO system, there are a total of

76 subaperture images. The expression for the cross-correlation function is given as

where IR(x) is the reference subaperture image, selected based on it having the

highest rms-contrast Rimmele and Radick (1998). IM(x) and D i are the remaining
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Figure 6.4 Optical schematic of the old BBSO 65-cm telescope (Denker et al., 2007).

subaperture images and pixel shifts between IR(x) and IM(x), respectively. The

maximum of the cross-correlation is located and the displacement necessary to correct

the wave-front tilt is determined. The result of the cross-correlation yields a tilt

vector map which is used in a modal reconstruction algorithm to determine the

driving signals for the shape of the deformable mirror.

The correlating SHWFS system can be used with parallel processing, greatly

expediting the computational time. The system can also use, under good seeing

conditions, granulation to lock, expanding the range of scientific studies to include

quiet Sun regions. In January 2004, under an National Science Foundation NSF

grant, BBSO was outfitted with a high-order AO system built as part of a collabora-

tive project with NSO/SP. The main components of this AO system, called A0-76,

consist of a 76 subaperture SHWFS, a 97-actuator deformable mirror and a digital

signal processor system (Denker et al., 2007). The BBSO implementation of AO-76

as it was developed in 2004 is for the most part identical to the set-up at NSO/SP,

the main difference being changes in optical design to accommodate the 65-cm BBSO

telescope. Figure 6.4 shows an optical schematic of the old 65-cm telescope, which is

a vacuum Gregory coudé reflecting telescope with an effective f-ratio of f /50. In the

coudé focus the plate scale is 6.3" mm-¹ . A 60 mm diameter pupil image is formed
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Figure 6.5 Optical schematic of the old 65-cm BBSO telescope in the panel on the
left. On the right is the layout of the light path from the coudé focus to the dome
floor (Denker et al., 2007).

near a folding mirror (TM3) by a 0.23 m focal length elliptical secondary mirror. The

optical support structure of the 65-cm telescope is such that the support truss for the

elliptical secondary is close enough to the entrance window of that is casts a sharp

shadow in the pupil image. The coudé optics consist of two flat mirrors (TM4 and

TM5). These two folding mirrors serve to reflect the light down the right ascension

axis of the telescope providing a stationary image for post-focus instrumentation.

Modification to the existing coudé optics was necessary to resolve a persistent pupil

wobble issue that was resulting in an unstable beam, unsuitable for the AO system.

The problem was resolved by replacing the existing TM4 and TM5 mirrors and

mounting the fixed mirror TM5 to a actuator so that it could be dynamically adjusted

for the pupil wander. Figure 6.5 shows an optical schematic of the light path from

the coudé focus of the old 65 cm telescope down through the dome floor to the AO

system and other post focus instrumentation located in BBSO's coudé laboratory.

The left most panel of Figure 6.5 shows the light path from the coudé box to a lens

(L1) that reimages the light to form the second pupil image of the system on to a tip-

tilt mirror (TT). Lens L2 images the Sun at the filter wheel position where there are

slots for the targets, grids, pinhole and adjustable iris. Lens L3 forms a third pupil
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on the deformable mirror (DM). The infrared portion of the beam is sent to IRIM

by means of a dichroic beam splitter (BS1). A 10/90 beam splitter (BS2) directs

the smaller fraction of the light to the speckle channel and wave-front sensing optics.

The remaining light is sent to the post-focus instrument VIM described in more

detail in Chapter 7. The speckle channel is responsible for taking the high cadence

speckle images that are subsequently used in the SMI post-facto image restoration.

A 50/50 beam splitter serves to send equal portions of light to the speckle channel

and the correlating SHWFS. The 76-element lenslet ( f ti 24 mm) array is placed in

the pupil plane and is responsible for imaging the given portion of solar surface onto

the CCD. The CCD camera used in the correlating SHWFS set-up is a custom-built

1280x 1024 pixel CMOS camera with a 400 µs read-out time and an acquisition rate

of ti 2500 frames s-¹ .

Like the DST AO system mentioned above, BBSO's AO-76 uses a two part

control system to link the WFS and the deformable mirror. The first part consists of

a real-time processor based on a parallel architecture and the second a graphical user

interface allowing the user to customize AO operations, such as the allotted number

of pixels used per subaperture on the CCD. The real-time processing unit computes

both Δx and Δy with subpixel accuracy using the cross-correlation function given

above in Equation 6.6. The wave-front reconstruction is accomplished via a board of

40 off-the-shelf Digital Signal Processor (DSP) units. Each DSP unit is responsible

for processing two subaperture images whose sizes can be selected as 16 x 16 or

20 x 20 pixels.

The success of AO-76 at BBSO has been documented by the high quality of

solar images produced throughout numerous observing runs. It is by that measure

that AO-76 is the impetus for the development of a new AO system for NST. For NST

the AO system will need to successfully operate over the NST's principal observing

wavelength range from 0.4 µm in the visible to 1.7 µm in the infrared. The system
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Figure 6.6 Optical layout for AO-76 for NST. Figure courtesy of Nicolas Gorceix,
BBSO optical engineer.

will be based on the architecture of AO-76, however plans to upgrade the system to

include higher order corrections over a larger area are in development. Figure 6.6

shows the optical layout that will integrate AO-76 with NST. The design will utilize

off-the-shelf optical components and was developed in an effort to minimize chromatic

abberations. Mirrors M5 and M6 are both flat folding mirrors that will feed light

from the Gregorian focus of the telescope. The two refractive elements of the design

are the two doublet lenses (doublet 1 and doublet 2), that serve to relay light to

the tip-tilt mirror. Mirrors OAP 1-3 are off-axis powered mirrors and DM is the 97-

actuator deformable mirror. Currently, collaborative plans between NJIT, NSO/SP

and Kiepenheuer-Institut fr Sonnenphysik KIS are in development to build a 300
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degree-of-freedom AO system called AO-308, based on the AO-76 architecture, for

the NST. The plan is two part: the first being the design and implementation of

AO-308 and the second is to include a Multi-Conjugate Adaptive Optics (MCAO)

system into the operation of NST. MCAO corrects over a larger area than traditional

AO. With an NST FOV of 180" diameter, AO correction over a larger area will be

necessary to optimize observations.

6.4 Frame Selection

Frame selection (Scharmer et al., 2002) is a technique that is used to select an

image based on a given set of criteria. The criterium is usually the rms-contrast

of the image and this method is used quite often in solar broad-band observations.

In Denker et al. (2005), high-spatial resolution images were obtained using frame

selection in combination with AO and SMI. Frame selection works by taking short-

exposure images with a high speed camera and selecting the images that contain

a solar feature of choice with the highest rms-contrast. In the case of quiet Sun

observations, such as those presented in Chapter 8, the contrast of granulation is

used in the frame selection algorithm. To illustrate the implementation of frame

selection for this section reference is made to the set of solar observations presented

in Denker et al. (2005). For this set solar active region NOAA 10486 was observed

using two distinct channels.

In the first channel data was acquired in the near-infrared (A = 1, 560±5 nm)

with a 1024 x 1024 pixel CMOS camera. The second channel or 'speckle channel'

was observed in the green continuum using a 1024 x 1024 pixel high-speed CCD

camera. The images used in the frame selection algorithm were taken using the

speckle channel. From 15:28 to 17:28 UT, 102 sequences consisting of 100 short-

exposure (4 ms) images each were taken. The 100 short-exposure images were

selected from an initial set of 200 based on the granular rms-contrast of a small
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region in the FOV. The set of more than 10,000 short-exposure images were then

used in SMI to further enhance the image quality. An example of one of the frame-

selected images is shown in the central panel of Figure 6.1. The image shown in

Figure 6.1 is the one with the highest granular rms-contrast out of the 200 images

taken in that sequence. The representation of the frame selection method presented

in Denker et al. (2005) can be executed in real-time. In Denker et al. (2001b), the

methodology for a near-real-time image processing technique is presented. The pro-

cess boasts image reconstruction of 1024 x 1024 pixel images with a 1-minute cadence.

For the set of observations presented in Denker et al. (2005) and in Chapter 8, the

data were saved on the hard-drive of the speckle PC and subsequently transferred to

a DLT tape drive.

6.5 Speckle Masking Imaging

SMI is a post-facto image restoration method that can be applied to sequences of

short-exposure time-series of the Sun. Used with AO, this method further enhances

the ability to beat the seeing limit and approach the diffraction limit of the telescope.

SMI and image restoration in general is only valid for a portion of the total image.

This portion, called the isoplanatic patch, is the region over which the wavefront

abberations are constant within the seeing correlation time-scale. The size of the

isoplanatic patch varies depending on the wavelength (~ P 5 ). For observations

in the visible portion of the spectrum a typical patch size is on the order of 5",

whereas in the infrared it is around 20" (Stix, Stix, 1989). The exposure time for

each image should be less than the time scale of the atmospheric refractive index

fluctuations. These fluctuations occur on timescales of a few tens of milliseconds, a

short exposure time of 5-10 ms is sufficient and well with in the range of acceptable

values. Furthermore the time between two sequences has to be shorter than the

evolution time scale of solar photospheric fine structure. The SMI process starts
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out with standard data calibration such as applying the flat field and average dark

images to the data set. After preprocessing the data a reference image is selected

from within the sequence. It is selected based on the highest value of the granular

rms-contrast. This image is then used to remove the image displacement from all

of the other images within that sequence. Differential image motion is removed in

a similar manner but this time the displacement is corrected for image files with

sizes of the isoplanatic patch. The aligned images are then used in the SMI method.

The goal is to separately reconstruct the Fourier phase and amplitude for the set of

images, bring them together in the Fourier domain, apply an amplitude correction

taking into account the seeing conditions, and then use the inverse Fourier Transform

to generate the reconstructed image. The method begins with the Fourier transform

representation of the imaging equation given as

(6.2)

where the bold letter q indicates a two-dimensional spatial frequency, F and F0 are

the observed and the object Fourier transformed intensity distributions, respectively.

The index i refers to the number of images in the sequence. Taking the absolute

values of each side and dividing by (IS(q)I² ² ) yeilds,

(6.3)

an expression for the Fourier transform of the objects intensity Labeyrie (1970). This

is often referred to as the power spectrum of the object. Here ( and ) represent an

ensemble average. The numerator is the average power spectrum of Fourier trans-

formed images and the denominator is the speckle transfer function (STF). Assuming

a Kolmogorov spectrum for the atmospheric turbulence, Korff (1973) obtained an

asymptotic closed form solution for representing the short-exposure transfer func-

tion. This expression is only a function of the Fried parameter r 0 . To determine

the Fried parameter the spectral ratio technique is used. This method includes all
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Figure 6.7 Power spectra ordered from highest to lowest for a speckle reconstruction,
short and long-exposure image (Denker et al., 2005).

contributions to the seeing from all layers of the turbulent Earth atmosphere and is

presented in von der Luehe (1984). The spectral ratio is defined as

where l‹Si(q)›I²² and ‹ISi(q)I² ) are the long and short-exposure transfer functions.

The two-dimensional spatial frequency q is normalized with respect to the system

cutoff frequency fc as

where L is defined as f, = D/λR von der Luehe (1984). The cutoff frequency

is determined by the observing wavelength A, the telescope diameter D and the

focal length R of the system. The long-exposure transfer function is presented in

Fried (1966) and like the short-exposure transfer function, it is a function only of

r0 . The Fried parameter is measured by comparing the observed spectral ratios with

theoretically tabulated values of the long and short-exposure STFs. The choice of a

good STF is paramount for accurate, photometrically reliable results. In general, the

theoretical STFs presented in Fried (1966) and Korff (1973) were derived without AO

correction accounted for. Taking into account the diminishing contrast with distance

from the AO lock-point a semi-empirical STF is used. The photometric accuracy of
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speckle interferometry using AO-corrected data is presented in Wöger et al. (2008).

The average power spectra generated from 90 one-dimensional intensity scans across

a purely granular region is shown in Figure 6.7. All three of the spectra plotted

in Figure 6.7 were normalized to the Nyquist frequency. Figure 6.7 clearly shows

that the solid line, representing the power spectrum of a speckle reconstruction, is

the highest. This is followed by the short-exposure image shown as the dashed line.

With the proper choice of the STF in hand, the Fourier amplitudes can be calculated

using Equation 6.3. To complete the image restoration, the Fourier phases need to

be calculated. Two methods are commonly used to determine the Fourier phases.

In Knox and Thompson (1974) a method to recover the phase information of an

object by averaging the cross spectrum is presented for the one-dimensional case.

The method can be easily extended for a 2-D image. The Knox-Thompson method

involves computing the autocorrelation of Equation 6.2. The average cross spectrum

as presented is given as

For q1 — q2 < r0/λ, the phase of the average observed cross spectrum is in close

approximation with the phase of the average object cross spectrum. By measuring

the complex correlation between points in the Fourier transform of the image, a phase

difference between the points under consideration can be determined. Using iterative

methods, the phase of the object is constructed by summing the phase differences

between the origin and a point in the Fourier transformed image plane. After com-

bining the object Fourier phases and amplitudes (described by the method above),

an inverse Fourier transform gives the reconstructed image. SMI is an extension of

the method presented in Knox and Thompson (1974). However, it uses a triple corre-

lation or bispectrum to recover the phase information Stix (1989). The method used

in Denker et al. (2006) and in the reconstructions shown in Chapter 8 of this thesis

are based on the SMI method presented in Weigelt (1977). The triple correlation is
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Figure 6.8 SMI clearly enhances the fine structure contents technique visible in this
image, e.g., small-scale penumbral structures (Denker et al., 2005).

defined as

where ‹S(q1)S*(q2 )) is the speckle masking transfer function (SMTF). Once the

phase information is known along with the Fourier amplitudes, the inverse Fourier

transform yields a mosaic of reconstructed subimages. Figure 6.8 shows the result of

applying the SMI technique.



CHAPTER 7

THE VISIBLE-LIGHT IMAGING MAGNETOGRAPH

7.1 Overview

As one of the dedicated post-focus instruments for NST, VIM will provide high

temporal and spatial resolution two-dimensional spectro-polarimetric measurements

of the Sun. More precise and accurate measurements of photospheric and chromo-

spheric vector flows and vector magnetic fields are thus possible, making the study

of solar activity more complete. In this chapter a summary of VIM is presented as

well as a calibration method for the set of two LCVRs used for VIM'S operation as a

spectropolarimeter. A detailed account of observing runs made throughout 2006 and

2007 will be covered as well as the presentation of the first Stokes-V Magnetograms

acquired using VIM. Along with the aforementioned material, an outline of future

improvements for VIM are discussed.

7.2 Introduction

A two-dimensional imaging spectropolarimeter is an instrument that operates as

a spectrograph with the addition of a set of polarization analyzing optics such as

LCVRs. In general, this type of instrument is capable of imaging the Sun at various

wavelengths for every spatial point in the FOV. Combined with AO and post-facto

image reconstruction techniques as discussed in Chapter 6, detailed studies of small-

scale magnetic features on the Sun are made possible. Unlike traditional line-of-sight

measurements this two-dimensional imaging spectropolarimeter is capable of mea-

suring both the magnitude and direction of the magnetic field. As a consequence

of these types of measurements, important physical parameters on the Sun can be

determined. One such example is the electric current density. By measuring the

112



113

photospheric vector flow and magnetic field one can calculate, using the induction

equation, the vertical component of the electric current density. In Li et al. (2009),

measurement of the transverse magnetic field strength B1 , the vertical field com-

ponent 13,, and the magnetic azimuth 0 were made using the Imaging Vector Mag-

netograph (IVM) at Mees Solar Observatory (MSO) in Haleakala, Maui. Using a

modified form of Amperes law, the absolute value of the vertical component of the

current density IJzI was calculated for active region NOAA 10030. Knowledge of the

current density is important because it is thought to play a role in coronal heating

(Mickey et al., 1996), one of the major unsolved mysteries of solar physics. Many

other examples can be given that support the role for this class of instrument as a

permanent installation at current and future solar observatories.

NST will employ the use of two two-dimensional imaging spectropolarimeters,

i.e. TRIM and VIM. These instruments will be used as dedicated post-focus instru-

ments replacing the successful Digital Vector Magnetogram (DVM) previously in use

at BBSO Spirock et al. (2001). VIM will cover the visible portion of the solar spec-

trum from 550 nm to 700 nm. IRIM will provide infra-red coverage from 1.0 µm to

1.6 µm. Both VIM and IRIM can operate in one of four distinct observing modes

(Denker et al., 2003a): pure spectrometer mode (full spectral profile, absence of

polarization optics), polarimeter mode (full spectral profile including polarization

optics), Doppler mode (selected spectral profile points) and photometric mode (single

spectral point). For the purposes of this chapter, only the spectrometer mode and

polarimeter mode configurations for VIM are considered. In the following sections,

a summary of VIM is provided with emphasis on the calibration method for the two

LCVRs. Also presented are the first polarimetric observations using VIM from a

2007 July 15 observing run at NSO/SP.
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7.3 Instrument Description

VIM is a Fábry-Perot based filtergraph instrument whose design is geared towards

the study of active region dynamics. VIM is first described in Denker et al. (2003a)

along with its counterpart IRIM. Figure 7.1 shows the optical set-up of VIM and

IRIM for the BBSO 65 cm vacuum telescope. VIM is shown in Figure 7.1 configured

in its spectrometer mode. Light from the coudé box is directed to lens (L1) which

forms a pupil image at the tip-tilt mirror (TT). Lens L2 images the Sun at the filter

wheel position which is located at the field stop (FS). The filter wheel has slots for

the targets, grids, pinhole and an adjustable iris. Lens L3 forms a second pupil image

on the deformable mirror (DM). The infrared portion of the beam is sent to IRIM

by means of a dichroic beam splitter (BS1). A 10/90 beam splitter (BS2) directs the

smaller fraction of the light to the speckle channel and wave-front sensing optics, the

larger fraction of light is sent to VIM. The interference pre-filter (IPF) and Fabry-

Perot interferometer (FPI) serve as the wavelength selecting optical elements of VIM.

The detector is a 1024x 1024 pixel high-speed charge-coupled device (CCD) camera

manufactured by DALSA corporation. It has a 12-bit digitization with a pixel size

of 14 x 14µm.

The camera can operate in full resolution mode (1k x 1k pixel) with a maximum

frame rate of 60 frames per second. With 2 x2 binning selected, the maximum frame

rate is 110 frames per second. An external signal converter was developed to allow for

the ability to set custom exposure times and synchronize exposures with the FPI. The

signal converter is connected to the camera's TTL trigger-in port. Exposure times

between 3 ms and 850 ms can be set through the control computer. The control

computer sends a signal to the signal converter box which generates a TTL signal

that is sent to the camera. Table 7.1 lists VIM'S characteristic parameters as they

were for the 65 cm BBSO vacuum reflector now replaced by NST. VIM uses a ICOS

FPI system that consists of a ET70FS-1024 series II fused silica etalon with CS100
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Figure 7.1 Schematic layout showing the optical set-up of VIM and IRIM in the
coudé laboratory of the 65 cm vacuum reflector at BBSO.

controllers that adjust FPI plate separation. VIM has an image scale s whose value is

close to the telescope's diffraction limit. For NST the value of s will be smaller than

that of the 65 cm ti 0.065", which is close to the NST diffraction limit. The FPI is

capable of scanning through a given line profile with a wavelength step σλ of 1.2 pm.

It has a spectral resolution λ/σλ of 87, 500. With a plate separation d of 496 µm, the

free spectral range ,Aλ of the etalon is 0.40 nm at 589.0 nm. In general, the small free

spectral range of FPI etalons requires selective prefiltering. To do so, a two-cavity

interference filter (IF) with a full-width-at-half-maximum (FWHM) of 0.3 rim is used.

The wavelengths of the three prefilters are given in Table 7.1 for the Fe I, Na D² and

Ha spectral lines. The reflectivity R and absorptivity A of the FPI are 0.968 and

3.4 x 10 -3 , respectively. Aside from alignment, VIM'S operation is fully controllable



Table 7.1 VIM Characteristic Parameters

Parameter 	 Design Specifications
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FOV
Image Scale s
Diffraction Limit a
Plate Separation d
Reflectivity R
Absorption A
Wavelength Increment σλ
Resolving Power λ/σλ
Operating Wavelength ).

Free Spectral Range Aλ

80" x 80"
0.18"pixel-¹
0.19" 589.0 nm
496 µm
0.968
3.4 x 10-3

1.2 pm
87,500
Fe I 630.15 nm
Na D ² 589.00 nm
Ha 656.28 nm
0.40 nm

through the FPI control computer. Figure 7.2 is a schematic of the VIM control

system. A Graphical User Interface (GUI) allows the user to set various parameters.

The software is responsible for synchronizing the following tasks: telescope control

computer communication, data acquisition and storage, etalon cavity spacing, and

polarization optics control.

7.4 Etalon Characteristics

In Denker and Tritschler (2005) the characterization and the method for calibrating

the ET70FS-1024 series II etalon is presented. An important factor that needs to

be considered when working with an FPI based instrument is plate parallelism. The

method for maintaining and quantifying the plate parallelism is explained using

Zernike polynomials to quantify etalon plate characteristics and establish the rela-

tionship between the piezoelectric actuator voltage and parallelism of the plates.

The technique was developed and implemented on the ICOS etalon used in VIM.

Figure 7.3 shows a sketch of the optical set-up used in the experiment. A 20 mW
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Figure 7.2 Block diagram of the control system for VIM (Figure 1 in Shumko et al.
(2005).

(632.8 nm) HeNe laser is used as a light source. A 10 µm pinhole spatial filter (SF)

and 90 mm diameter custom acromat (A1) collimate the beam passing through the

etalon plates. A second acromat (A2) images the first etalon plate on a Dalsa CCD

camera. The etalon plates are coated for the wavelength range from 510 nm to 660 nm

with a plate flatness of λ/136. In general FPIs provide excellent light throughput

with transmission between 70% to 90% making them a good fit for photon-starved

polarimetric measurements. Figure 7.4, shows the etalon coating curves as a function

of wavelength. The maximum or peak transmission Tmax of the etalon is computed

using the absorption A and reflectivity R curves using,

Tmax (7.1)
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Figure 7.3 Optical set-up for determining the plate parallelism for the VIM's Fabry-
Pérot etalon (Figure 2 in Denker and Tritschler (2005)).

The ratio of the separation of adjacent transmission maxima to the half-width, known

as the finesse of the etalon F, is calculated using manufacturer specifications with

the expression,

where p is the plate flatness error specified by the manufacturer. In Figure 7.5 the

transmission profile for the etalon is shown on the left for 4000 wavelength steps. The

free spectral range (distance between neighboring transmission maxima) of 0.40 nm

is clearly visible. A free spectral range of 0.40 nm corresponds to 670+1 steps.

The full scanning range of the Fábry-Perot etalon is 2.47 nm corresponding to six

transmission peaks. On the right hand side of Figure 7.5 is a close up of a single

transmission peak. The peak is approximately 9.6+0.4 steps FWHM. The orange

curve overlay is a best fit, represented with an Airy function given as

For an angle of incidence B and the path difference between two successive beam

fractions Δ = 2n d  cos(θ), the phase difference σ is

The measurements used to align the etalon plates are done by determining the root-

mean-square (rms) variation of the wavelength shift λ0,rms. To do this, a range of

0.05 V was manually scanned on the CS100 controller for both the x- and y-direction.
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Figure 7.4 The wavelength dependence for the etalon coating is shown. Clock-
wise from top left: Reflectivity R), Absorption A, Peak Transmission Tmax and the
Nominal Finesse F (Figure 1 in Denker and Tritschler (2005)).

Fifteen data points were taken and a 2 nd order polynomial fit was used. Figure 7.6

shows the results of the measurement. The minimum λ 0 for both the x- and y-

direction was determined, giving the voltage settings for parallel etalon plates. In an

effort to refine the aforementioned method and create the prospect for an automated

plate parallelism calibration procedure, Zernike polynomials are used to model the

characteristics of the etalon plates. Measurements of the wavelength shift across the

FOV are made and the coefficients of a Zernike polynomial fit are determined.

The Zernike coefficients corresponding to the tip-tilt of the etalon plates are

compared with the x- and y-voltages corresponding to a minimum λ0,rms and an

analytical relationship is formed. Figure 7.7 shows the results of the coefficient
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Figure 7.5 The transmission curve for the etalon is shown on the left. The distance
between neighboring peaks is the free spectral range Δλ. A close up of a single
transmission peak (blue curve) is shown on the right, the orange curve is a best fit
Airy function (Figure 3 in Denker and Tritschler (2005)).

comparison described above. The result of this method is that the calibration curves

shown in Figure 7.6 need only be measured once and subsequently the correct voltage

settings can be determined from just one wavelength shift measurement.

7.5 Pre-Filter Calibration

On 2006 June 3, VIM was packed and transported from the coudé optical laboratory

at BBSO to NSO/SP, NM. The objective of the observing run was two-fold: to

calibrate the three IFs using the horizontal spectrograph (HST) at the DST, and

to make observations using VIM configured in spectrometer mode. In this section,

the filter calibration method is discussed. The method was applied to all three

interference prefilters used for VIM. The goal is to determine the average transmission

profiles for all three of VIM's IFs.

A simplified optical setup for the three-filter calibration is shown in Figure 7.8.

A 780 mm lens (L1) serves to feed light into the HST. The slit of HST is set to
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Figure 7.6 Plot of the rms-wavelength shift as a function of piezo-electric voltage.
In each plot, blue asterisks mark the measurement points and the orange curve is a
polynomial fit. The voltage minimum is marked by the vertical red line (Figure 6 in
Denker and Tritschler (2005)).

a width of 40 µm. Inside of the HST (not shown) light is folded 90° by a 75 mm

mirror through a collimating lens. Collimated light exits the HST and is dispersed

using the NSO-316 (316 lines/mm) Milton Roy blazed grating. Lenses L2, L3 and

L4 are 3 m focal length lenses that focus the three relevant dispersed orders from

the grating onto three cameras (CCD1, CCD2 and CCD3). The interference filters

(IF1, IF2 and IF3) are mounted on precision 360° rotation stages. A shutter (S) is

placed in front of each of the filter mounts and a neutral density filter (not shown)

is placed behind each to avoid image saturation.

Currently, VIM can operate using one of three two-cavity Barr Associates

narrow-band IFs: Ha (IF1) 656.33±0.3 nm, Fe 1 (1F2) 630.25+0.3 nm and Na D ²

(IF3) 588.99±0.3 nm. The DST was pointed at a quiet Sun region located at disk

center. The seeing conditions were good throughout the observing run and the AO

system was turned off. The filters were rotated on the stage in increments of 0.5°

and for each rotation a set of 64 exposures was taken. Also for each rotation setting

a set of 64 flat field exposures was taken. After all the filter rotations were made a

set of 64 dark field exposures were taken.
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Figure 7.7 Zernike polynomial fit for aligned and misaligned etalon plates repre-
sented by the orange and blue curves respectively (left). (middle and right) Tip-tilt
coefficients as a function of the applied x and y piezo-electric voltage in orange and
blue, respectively (Figure 10 in Denker and Tritschler (2005)).

This process was repeated for all three of the IFs. Figure 7.9a through

Figure 7.9f show the spectra and transmission profiles for the Fe I 630.15 nm inter-

ference filter with a rotation angles from 0.0° to +2.5° in increments of 0.5°. Flat

field and dark frame corrections were applied to the data. The flat field image

contains spectral information. To obtain a uniform flat field each row of pixels in the

flat field image was divided by the computed average spectrum. Figure 7.10 shows

the normalized transmission intensity for the average observed spectrum (thin black

curve), the solar atlas spectrum (light gray curve), and the transmission profile for

the 0.0° position of the Fe' 630.15 nm interference filter.

The transmission profile for the Fe i 630.15 nm interference filter at various

rotation angles is shown in Figure 7.11. As the filter is shifted from normal incidence

to oblique, the spectrum is shifted towards the blue. This is evident in Figure 7.11 as

the incidence angle increases from normal (0.0°, red) to oblique (+3.5°, blue). After

the pre-filter calibration, VIM was configured to operate in spectrometer mode and

observations of both quiet Sun and active region were carried out for the remainder

of the observing run. A summary and analysis of the observations of a quiet Sun

region near disk center are presented in Chapter 8.
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Figure 7.8 Schematic of the optical set-up for the filter calibration experiment
carried out on 2006 June 3, at NSO/SP.

7.6 Polarization Optics and Calibration

The components and configuration of the polarization module used in VIM is based

on BBSO's DVMG presented in Spirock et al. (2001). The DVMG system used

two LCVRs to measure polarization and obtain the full Stokes vector. The DVMG

calibration technique employed the use of a λ/4 wave plate at the Cal 610.3 nm

absorption line. To apply this technique for VIM required the purchase of three new

λ/4 wave plates, one for each of VIIVI's interference filters. Therefore, the substantial

cost and feasibility was too prohibitive and a new calibration method was needed.

The calibration method used for the Telecentric Etalon Solar Spectrometer (TESOS)

full Stokes polarimeter proved to be a good model on which to base our a calibration

technique for VIM on (Kentischer et al., 1998). The method uses only narrow-

band interference filters to map the wavelength dependence of the LCVRs so no new

components were necessary. In this section the calibration procedure for the LCVRs



Figure 7.9 Fe i 630.15 urn IF transmission profiles and spectra.
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Figure 7.10 Plot of the transmission intensity as a function of wavelength for the
average observed spectrum (thin black curve), solar atlas spectrum (light gray curve),
and transmission profile (thick black curve) for the Fe I interference filter at 0.0°.

is presented. The derivation of the retardance as a function of voltage for the two

LCVRs at each of the three wavelength settings, Fe I 630.3 nm, Na D² 589.0 nm and

Ha 656.3 nm is determined. Figure 7.12 shows the optical set-up used in calibrating

the LCVR.

The light source for the calibration is a StockerYale ImageLite Model 20 halogen

lamp outfitted with a 12 mm diameter fiber bundle (FB). Care was taken to center

the FB on the optical axis of the set-up. Light from the FB is collimated using

two acromat lenses L ¹ and L2, with focal lengths fi = 450 mm and f² = 450 mm,

respectively. A field stop FS serves to minimize stray light caused by the relatively

large exit angle of the FB. A 95/5 beam splitter BS directs 95% of the light through
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Figure 7.11 Transmission profiles for the Fe I filter at various angles from 0.0° (red)
to +3.5° (blue) in increments of 0.5°.

the calibration channel and 5% through the reference channel. A folding mirror

M reflects the 5% towards the CCD and a third acromat L3 with a focal length

f3 = 500 mm focuses the light onto a portion of the CCD chip. To keep the intensities

of the calibration and reference channel the same at the CCD, a neutral density filter

(NG) with 2 mm was inserted in the reference channel. The calibration channel

consists of the two linear polarizers (LP) and the LCVR. The two linear polarizers

are Meadowlark Optics Model No. DPM-200-VIS1 coated to work in the 400-700 nm

range. The two LCVRs are Meadowlark Optics Model No. LRC-300-VIS also for

use in the 400-700 nm range. The calibration procedure is done for one LCVR

at a time. Both the LCVRs and LPs were mounted on rotation stages with 2°

and 1° resolution respectively. The operating temperature of both LCVRs is 30°
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Figure 7.12 Optical set-up to the test the polarization optics. FB: fiber optics
bundle, FS: field stop, KG: UV-blocker, BS: 95/5%, L 1 through L3: acromats, LP:
linear polarizer, LCVR: liquid crystal variable retarder, M: folding mirror, NG: neu-
tral density filter, and CCD: CCD camera.

C. Meadowlark Optics liquid crystal digital interface D1040-TSO controllers and

power supplies for the temperature stabilization were used throughout the course

of the measurement. The detector is a 1024 x1024 pixel Dalsa 1M30 CCD set for

operation in a 2 x 2 binning mode producing 512 x 512 pixel images. The calibration

data were obtained from 2006 August 17, through 2006 August 21, in the coudé

optical laboratory at BBSO. Figure 7.13 shows a typical image frame acquired. The

large circular region in the center of the image is the intensity of the fiber bundle.

The "blotchy" looking intensity pattern is a result of both individual fiber quality and

uneven illumination by the source. The smaller, relatively uniform, bright circular

region in the lower right corner of Figure 7.13 is the reference channel. The masked

brighter region in both the calibration and reference channel images is the area used

to compute the mean intensities.

7.6.1 Light Source Intensity Variations

An issue when calibrating LCVRs is finding a stable light source. Intensity variations

of less than 10' are needed to carry out calibration measurements. However, light
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Figure 7.13 Image of the reference channel (lower right corner) and fiber optics
bundle. The outlined brighter regions in both the fiber and the reference were used
to compute the mean intensities.
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Figure 7.14 The intensity variation of the StockerYale light source over a 10-minute
period. The black curve shows the uncorrected light level variations and the gray
curve shows the corrected. The gray curve has been multiplied by 100 to show
sufficient detail.

sources with this criteria are difficult to find. To illustrate the effect, Figure 7.14

shows the intensity variation over a 10 minute period for the light source. The

variations are likely a result of the varying output of the power grid as well as the

power consuming devices such as the air conditioning system. Visible in Figure 7.14

is a jump exceeding 5% as well as smaller 1% variations.

To minimize the effect of the light source intensity variations, a differential

measurement technique is implemented, by directing 5% of the light via BS along

a reference channel and imaging it on a small portion of the CCD. Reference mea-

surements are then made simultaneously and with the same exposure times as the

calibration. The result of this differential measurement is shown by the gray curve

in Figure 7.14, where the stability has improved by a factor of 50. To show the

variation more clearly the intensity ratio I/I 0 was multiplied by a factor of 100. The

corrected signal has no discernable jumps, exhibiting only a small drift during the



Figure 7.15 Average intensity as a function of the rotation angle of the second
linear polarizer.

10-minute period. The improvement in stability of the intensity signal of the light

source is sufficient to proceed with determining the retardance measurement.

7.6.2 Calibration Procedure

At least one hour before making any measurement, the light source and LCVRs

heaters were powered on. The first step of the calibration procedure is to determine

the parallel (11) and perpendicular (1) alignment of the two LPs. The first polarizer

remains at a fixed position with its axis in the vertical position (clearly marked by

the manufacturer) while the second is turned from 0° to 180° in increments of 5°.

An 80 ms exposure time was used for all measurements performed in the calibration.

This exposure time is similar to the one that VIM uses during regular operation.

At each position 10 images are taken and averaged. Figure 7.15 shows the scanning

130



131

Figure 7.16 Transmission vs. rotation angle between two linear polarizers with
out light level corrections (left) and with (right). The transmission maximum in
the uncorrected case (left) occurs at 5.3° (x ² = 3.2 x 10 -4 ). For the corrected case
(right) the maximum occurs at 4.9° (x ² = 1.2 x 10 -4 ).

sequence for the second linear polarizer. The transmission profile for the averaged

intensities as a function of rotation angle is shown in Figure 7.16. A non-linear least

squares sine-function fit

with fitting parameters a0 , a l , and a² is used to determine the parallel orientation

angle O = 4.9°. The fitting parameter a l is used to determine the value of 9 which

is with respect to an arbitrary zero point for which the polarizers are parallel to each

other. Figure 7.16 also illustrates the effect of making differential measurements,

evident through visual inspection and the χ ²-statistics. The second part of the

calibration procedure involves the alignment of the fast axis of the LCVR at a 45°

angle with respect to the axis of the first linear polarizer. The polarizers are kept in

the parallel position and the fast axis that is marked on the LCVR housing is aligned

to the zero position. A range of +10° is scanned in increments of 2° around the zero

position. At each rotation position of the LCVR, 201 measurements are made at

voltages from 0 V to 10 V in increments of 50 mV. At each position 10 frames are
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Figure 7.17 The retardance (deg) as a function of applied voltage (V) for Mead-
owlark Optics LCVR1 (left) and LCVR2 (right) measured with Fe I (gray), Na D ²
(black) and Ha (light gray) interference filters.

averaged. To ensure there was enough time for the LCVR to reach the retardance

value, a 100 ms delay was introduced before changing the voltage.

The objective is to find the angle a that corresponds to a minimum in the 1 - 11

transmission profile. To determine a a parabola-fit was applied to the minima. The

resulting a for both LCVR1 and LCVR2 is a l = 146° and a ² 304°. With these

values the set-up is aligned and the retardance measurements for all three IFs can

be made. The expression for the retardance is

where I II is the intensity of light as function of voltage for parallel linear polarizers and

II for perpendicular (crossed) linear polarizers. Figure 7.17 shows the retardance as a

function of the applied voltage for Meadowlark Optics LCVR1 and LCVR2 measured

with each of the Barr Associates narrow-band interference filters. The retardance

as a function of applied voltage for the Fe I 630.25 nm filter is shown in gray, the

Na D² 588.99 nm in black and Ha 656.33 nm in light gray. With the retardances in

hand the final step is to determine the voltage settings where the LCVRs act as a

glass plate (0° and 360°), a λ/4 wave plate (90°), and a λ/2 wave plate (180°). The

retardance curves were mapped to a equidistantly spaced grid with a resolution of
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Table 7.2 Retardance Settings LCVR No. 1

Table 7.3 Retardance Settings LCVR No. 2

1 mV using linear interpolation and the respective retardance settings were read out.

Table 7.2 lists the retardance voltages for LCVR1 and LCVR2.

7.7 Polarimetric Observations with VIM

With the polarization module for VIM calibrated by the end of summer 2006 and

BBSO in the midst of upgrading the observatory dome for NST, VIM was packed

up and transported to NSO/SP for a December 2006 observing run. The purpose

was to obtain polarimetric measurements with VIM using the DST. The seeing con-

ditions at Sacramento Peak throughout the winter months can be quite poor, and

fluctuating light levels plagued all attempts at making sensitive polarimetric mea-

surements. VIM was left at NSO/SP and a observing proposal was submitted and

accepted for July 2007 at NSOSP. On 2007 July 15, the first successful polarimetric

measurements were made with VIM. Figure 7.18 shows the optical set-up for the

July 2007 NSO/SP observing run. A speckle channel was included in the set-up to
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Figure 7.18 Optical set-up for July 2007 observing run. BS: 95/5% beam splitter,
FS: field stop, ND: neutral density filter, L ¹ through L4: acromats, LP: linear polar-
izer, LC1, LC2: liquid crystal variable retarders, FPI: Fabry-Pérot Interferometer,
IF1, IF2: narrow band interference filter, CCD1, CCD2: CCD cameras.

make simultaneous white light observations to be used later for speckle restoration.

A 95/5% beam splitter (BS) is used to deliver 5% of the light to the speckle channel

and the remainder to VIM. The Fe I 630.25 nm filter IF2 was used for the observa-

tions. The polarization module consisting of both liquid crystals LC1 and LC2, and

a linear polarizer LP were placed after IF2. The Fabry-Pérot Interferometer FPI is

mounted in a telecentric configuration using acromats (L2, L3, and L4). The objec-

tive was to measure a Stokes V/I signal. VIM was operated in the magnetograph

mode, scanning only four wavelength points in the blue wing of the Fe I absorption

line. An exposure time of 150 ms was used to make a total of 460 data sets (Stokes

I + V and I — V) with a cadence of 4.7 s.

The data was taken from 15:20 to 15:50 UT, spanning a time period of 30 min.

A "rough estimate" of the Stokes V/I signal is shown in Figure 7.19 for a region of

the Sun located at 6.9° S and 28.6° W. The term"rough estimate" refers to operating

VIM in the "magnetograph mode", where only four wavelength points in the Fe I line

wing are analyzed. The signal to noise ratio (S/N) was enhanced by averaging over
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Figure 7.19 Stokes V/I in blue wing of Fe I 630.15 um line.

a 2 minute time period . The results are promising, however further calibration is

necessary. For instance, for a Fabry-Pérot etalon mounted in a telecentric configu-

ration the central wavelength λ 0 is a function of the FOV. Figure 7.20 shows a map

of the wavelength shift over the 80"x 80". A shift of 5.0 pm is measured which is on

the order of VIMs bandpass at the Fe I line. The effects of the shift can be seen as

artifacts at the east and west sides of the magnetogram in Figure 7.19.

7.8 Conclusion

In this chapter VIM is described as well as some of the more important calibration

procedures that are necessary to implement when observing using VIM. The first

calibration discussed is a procedure for determining and controlling the plate par-

allelism of the etalon. For the ICOS Fabry-Pérot etalon used by VIM, Denker and

Tritschler (2005) measured a peak-to-valley wavelength shift of 12.9 pm at 632.8 nm

across the central 50 mm of the FOV due to unparallel plates. To resolve the effect

that plate parallelism has on both wavelength and finesse, Denker and Tritschler



Figure 7.20 Central wavelength shift map of the Fabry-Pérot etalon.

(2005) presents a procedure that relates the coefficients of Zernike polynomials to

the x and y voltages of the piezo-electric actuators that control plate separation.

Along with plate parallelism, it is necessary to know the transmission profile of the

IFs as a function of rotation angle in order to center the spectral line on the pass

band of the filter. Using the HST at the DST the average transmission profile was

determined for each of the three IFs for different rotation angles. It was found that

as the filter is rotated from normal to oblique incidence, the spectrum is shifted

towards the blue. The final calibration procedure that presented in this chapter is

the measurement of the retardance vs. voltage curves for the two LCVRs used for

VIMs operation as a spectropolarimeter.

The goals of modern, two-dimensional spectroscopic and polarimetric instru-

ments are to provide observations of the Sun with high spatial, spectral and temporal

resolution. These three conditions must be met to help further current understanding

of feature morphology, heights of formation, and dynamics of small-scale magnetic

fields in the solar atmosphere. VIM is a Fabry-Pérot based imaging magnetograph
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instrument that possesses all of the aforementioned characteristics. The primary

role of VIM as a dedicated post-focus instrument for NST will be the study of active

region evolution and space-weather forecasting. However, it is equally well suited for

quiet Sun observations such as the ones presented in Chapter 8. Successful obser-

vations using VIM have also been presented in Denker et al. (2008), where VIM

was used in the spectrometer mode to study the characteristics of bright penumbral

grains in an active region.



CHAPTER 8

QUIET SUN OBSERVATIONS OF THE CHROMOSPHERE

8.1 Overview

The quiet Sun shows a multitude of magnetic fine structures, in both the photosphere

and chromosphere. To discern among different structural elements, observations

with high spatial, spectral and temporal resolution are required. On 2006 June 11,

near-simultaneous broad-band continuum (600 nm) and narrow-band spectroscopic

(Ha λ656.28 nm and Na D 2 λ588.99 nm) data were acquired of a supergranular cell

in a quiet region near Sun center using the Dunn Solar Telescope (DST) at the

National Solar Observatory/Sacramento Peak (NSOSP). The time-series of broad-

band continuum data were restored using the speckle masking technique (Weigelt,

1977) to achieve almost diffraction-limited resolution across the entire (83" x 83")

field-of-view. The narrow-band spectroscopic data were acquired using a Fabry-

Perot based two-dimensional imaging magnetograph instrument called the Visible-

light Imaging Magnetograph (VIM). At the time these observations were made, the

polarization module for VIM was in the process of being calibrated (see Chapter 7)

and as a result the data presented here were acquired using VIM configured as a

spectrometer.

In a first step the data sets and the reduction techniques used are described.

The results of the broad-band and narrow-band data are then combined to study

the dynamic upflow events that are observed to occur throughout the cell interior

and boundaries. The results presented in Lee et al. (2000) are confirmed using the

Ha data and an attempt to find a similar signature of these events in Na D² which

is formed at a lower height in the solar atmosphere. While upflow events have been

observed in Ha, this is the first time that a study has been made to identify upflow

events in their early stages of development using Na D² observations.
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8.2 Introduction

In this section the current model of the quiet solar atmosphere is reviewed, in an effort

to set the stage for the observations that follow. By observing emission that originates

from different altitudes in the Sun's atmosphere (i.e. 600 nm, Ha 656.28 nm and

Na D2 588.99 nm) one may develop a better sense of how the atmosphere is composed

vertically. In a simple sense, it may be said that different solar absorption lines

are formed at different heights in the Suns atmosphere. The formation heights of

various solar atmospheric absorption lines are determined by both observations and

numerical radiative-transfer-based simulations of which there are many (an excellent

review of solar atmospheric models is presented in Rutten 2007). Based on current

atmospheric models, one cannot accurately say that the line in which the Sun is

observed at is formed at a precise altitude in the atmosphere. A safer assumption

would be to prescribe a range of heights to the formation of a given absorption line.

This is the assumption that is taken throughout the rest of the chapter particularly

when upflow events and the heights in the solar atmosphere at which they potentially

exist are discussed.

The quiet solar atmosphere is generally considered to be composed of three

layers, the photosphere, chromosphere and corona. When taken as a whole, the

atmosphere is riddled by complex interactions of competing physical processes, such

as convection, conduction, magnetic fields and of course radiation (Wedemeyer-Bohm

et al., 2009). Together these processes create a complex framework in which the

observer and theorist must come to agreement. In the dense photosphere, hydrody-

namic forces dominate, where the ratio of gas pressure to magnetic pressure (plasma

/3) is greater than one. It is in observations of the photosphere that the emergent

granular pattern is seen as a result of the overshooting convective motion from below.

The situation is reversed in the case of the chromosphere, where [3 is less than one

and magnetohydrodynamic (MHD) forces dominate. The transition from the photo-
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sphere to the chromosphere can be thought of as a transition that marks the onset

of the magnetic-field-dominated region of the solar atmosphere (Uitenbroek, 2004).

Though there is an inherent difference between the photosphere and chromosphere

in terms of the dominant forces that are present, the two atmospheric layers should

not be thought of as independent of one another.

The magnetic fields that create the rich and complex structure visible in narrow-

band observations, taken in one of the strong chromospheric absorption lines (Ha,

Ca), originate as emergent flux in the photosphere. Through advection by large-

scale convective flows, the emergent flux gathers at the boundaries of supergranular

cells where on-disk features such as mottles/fibrils (spicules at the limb) outline the

observed magnetic network. Figure 8.1 (Figure 16 in Wedemeyer-Böhm et al. (2009))

shows a relatively simplified schematic of the structure of the quiet solar atmosphere,

which is based on numerical simulation and observations. Wedemeyer-Böhm et al.

(2009) organize the atmosphere in terms of two different domains, the "canopy"

and "sub-canopy" , named for the way in which the magnetic field extends over the

internetwork (IN). The canopy consists of large-scale magnetic fields that are rooted

at the network boundaries with field strengths on the order of kG, while the sub-

canopy is dominated by a ubiquitous magnetic carpet of weak fields with a mean

field strength of approximately 2 G (Title and Schrijver, 1998). Stratified within the

canopy and sub-canopy domains are the constituent layers of the solar atmosphere,

the photosphere, and the chromosphere. The chromosphere is represented most

clearly through the large-scale magnetic structures that form the canopy domain,

namely spicules.

The photosphere on the other hand can be thought of, according to Wedemeyer-

Böhm et al. (2009) and Rutten (2007), as consisting of three layers: the lower pho-

tosphere, middle photosphere, and upper photosphere. Granulation is the signature

feature in the the lower and middle photosphere, the dynamics of which are a result of
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Figure 8.1 A schematic showing a simplified view of the quiet Suns atmospheric
structure. The scale on the left of the figure gives the approximate heights of the
atmosphere layers. (Figure 16 in Wedemeyer-Böhm et al. (2009)).

a host of underlying convective effects. The upper photosphere sits approximately at

500 km above the surface at the location of the temperature minimum. The upper

layer of the photosphere sits below the fluctosphere (or clapotisphere), an atmo-

spheric region that is characterized by weak fields whose dynamics are determined

by acoustic wave interference that originates in the low photosphere (Rutten, 2007).

Acoustic wave generation can be attributed to convective overshoot, exploding gran-

ules, and solar p-mode oscillations. Evidence for acoustic waves in the solar atmo-

sphere was first presented in the early 1960's when Leighton et al. (1962) measured

brightness fluctuations in Na D ¹ observations with 5 oscillation periods. Acoustic

waves interact in a complex fashion with local magnetic field lines that exist in a

cavity such as the sub-canopy.

The picture of the solar atmosphere, greatly simplified in the explanation given

in this section, is one of interacting phenomena that are invariably coupled from the

photosphere up to the corona. Summarizing the results presented by Wedemeyer-

Böhm et al. (2009): The photosphere 0-500 km) is the layer that sits on top
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of the convection zone, and can be thought of as having a lower, middle and upper

portion. The fluctosphere 500-1500 km) located within the sub-canopy domain,

is a region of variable density, dominated by shock waves. The chromosphere (~

1500 km; transition region) is the upper most layer of the solar atmosphere, sitting

in the canopy domain with the predominant visible features being spicules.

The atmospheric features that are the focus of this chapter are the transient

features called Ha upflows. The name Ha upflows, first given in Chae et al. (1998),

comes from the signature blue shift that these features present in Ha line profiles.

Upflows occur both in the IN and along the network boundaries with average Doppler

velocities of approximately 5 km s' (Lee et al., 2000). The formation of these fea-

tures is thought to be a result of magnetic reconnection that is associated with

converging network-internetwork magnetic dipoles. In Wang et al. (1998), observa-

tional evidence was presented showing the correspondence between upflows (called

Ha — 1.0 A jets at the time) and UV explosive events.

The upflow features presented in Wang et al. (1998) occurred primarily at the

network-internetwork boundary which was determined by the good spatial agreement

seen after co-aligning BBSO magnetographs and Ha time sequences. Shortly after,

Chae et al. (1998) presented the results of a study using Ha spectrograph data

and Solar and Heliospheric Observatory (SOHO) / Solar Ultraviolet Measurements

of Emitted Radiation (SUMER) data. The results of the study conducted by Chae

et al. (1998) confirmed the link between upflows and UV explosive events, and showed

the existence of upflows not only at the network-internetwork boundary but within

the cell as well. In an attempt to explain the link between observed flux cancelation,

Ha upflows, and UV explosive events, Chae (1999) presented a two-step magnetic

reconnection model.

The model starts with the formation of a small magnetic island formed by flux

pile up as a result of slowly occurring magnetic reconnection in the photosphere.
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When a critical flux is reached the magnetic island becomes unstable and moves

either up or down from its equilibrium position. An island that moves up into higher

layers does so with increasing velocity and it begins to expand. At this point the

island is observed as an upflow feature in Ha. The second reconnection occurs when

the upward moving island comes into contact with overlying magnetic field lines,

creating a current sheet. Cool material is then injected from the expanding island

into the overlying field lines where the material is heated and accelerated. The

accelerated material is what is observed in the UV, and is interpreted as an explosive

event.

Upflow events are part of a large group of jet-like phenomena (thought to occur

through magnetic reconnection) that are observed throughout the upper atmospheric

layers of the Sun. However, it is difficult to distinguish between them and to pinpoint

the precise role they may play in supplying the required mass and energy necessary

to explain the hot corona and other of the Sun's physical characteristics. In a recent

article by Heggland et al. (2009), a numerical simulation was presented giving the

observational signatures of magnetic reconnection caused by waves. In this study

Heggland et al. (2009) mentions the correspondence between the intervals in which

explosive events occur and wave modes produced by the granulation. Numerical

simulations of this type, paired with multi-wavelength observations of high spatial

and temporal resolution, could close the gaps that exist between observation and

theory. In the following section a description of the observations that were made

using the DST at NSO/SP on 2006 June 11, centered on a network region at disk

center are discussed.

8.3 Observations

On 2006 June 11, a quiet Sun region located near Sun center (N4.4°, W1.6°) was

observed using the DST at NSO/SP. The seeing conditions throughout the period of
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Figure 8.2 Optical set-up; 95/5% beam splitter (BS), field stop (FS), interference
filters (IF1 and IF2), acromat lenses (L1—L4), Fábry-Perot Interferometer (FPI),
neutral density filter (ND), and cameras (CCD1 and CCD2)

observation varied from excellent to poor. During times of good seeing the NSO/SP

high-order Adaptive Optics (AO) system was deployed successfully. At the time,

a pair of active regions, NOAA 10892 and NOAA 10893 were present on the Sun.

Active region NOAA 10893 located at South 66" and West —43" was closest to disk

center. A study of NOAA 10892 using data reduction techniques identical to the

ones presented here is given in Denker et al. (2008). Figure 8.2 shows an optical

schematic of the setup used for observations.

The data were acquired in two distinct channels: a narrow-band spectroscopic

channel consisting of VIM, and a broad-band speckle-channel using a fast CCD

camera for speckle imaging. A beamsplitting cube BS transmits 95% of the inci-

dent light to the narrow-band channel and reflects 5% to the speckle channel. In the

narrow-band channel the pupil image at FS is focused by a 3000 mm acromat lens

L2 to a point between the plates of a Fabry-Pérot etalon FPI. The FPI is arranged

in a telecentric configuration which minimizes transmittance variations across the
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FOV. The drawback to a telecentric configuration is that the spectral resolution of

the observations is slightly reduced by spurious artificial Doppler signals due to the

wavelength dependence of the FPI transmission across the FOV. Corrections for such

effects are omitted for the reasons presented in Krieg et al. (1999), who cited negli-

gible wavelength variations of approximately —16 mÄ in the raw data using a setup

very similar to the one in Figure 8.2.

After passing through the FPI, light is collimated by f 3 = 800 mm L3 and

f 4 = 250 mm L4-a pair of acromat lenses- and re-imaged onto a 512 x 512 pixel

camera CCD2. The narrow-band (3 A) interference filter IF2 is placed close to the

pupil image at FS, set before the FPI. At this point in the optical path the light is

collimated. In the speckle channel a 600 nm broad-band (±5 nm) filter IF1 is used in

combination with a 1024 x 1024 pixel high-speed CCD camera CCD1. Light passes

through the pupil stop FS and is imaged on CCD1 using a 1000 mm acromat lens

L1. A neutral density filter ND is placed after IF1 to attenuate the light, so that
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image saturation is avoided. A description of the instrument characteristics for the

observations are given in Table 8.1 and Table 8.2.

A total of four sets of data were acquired from 14:12-16:21 UT. Table 8.3

lists the individual times for each of the four data sets. The first set, listed in the

Table 8.3, is comprised of two subsets. Subset Ia was taken with the FPI configured

to one frame per step (resulting in a 12-s cadence), and so finished sooner than the

corresponding speckle set. The FPI was quickly reconfigured through the software

to acquire five frames per step (subset Ib) and finished with the first speckle set. In

the remaining three sets of data the FPI was configured to take five frames per step.

The first two sets were acquired in Ha and for the remaining two (III and IV) the

filter was switched and observations were made in Na D². It is important to note
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Figure 8.3 (left) AO-corrected image acquired at 14:16 UT before speckle masking
imaging (SMI) was applied. (right) Same image after SMI was applied. The inset in
each of the images gives a close up view the 16"x 16"outlined region. Solar filigree
are visible in between the lanes that separate the granules.

that both CCD1 and CCD2 are controlled with separate computers, as a result the

data were acquired in a near-simultaneous fashion, as the synchronization of both

instruments occurs within a few seconds (20+5 s) of each other.

8.3.1 Broad-band Data

In the speckle-channel, bursts of 4 ms (short exposure) images were acquired with

a 30-s cadence. The FOV for the broad-band images is 83.1"x 83.1", resulting in

an image scale of 0.08" pixel'. In line with the review of modern image correction

methods presented in Chapter 6, AO, frame selection, and speckle masking imaging

(SMI) were applied to all four sets of the broad-band data. The data reduction

methods for the broad-band data are identical to the ones presented in Denker et al.

(2008). Figure 8.3 gives an example of one of the broad-band images with (right)

and without (left) SMI applied. The image was acquired in the first data set at

14:16 UT during a period of excellent seeing. The granular rms contrast for the

uncorrected image is The inset (16"x 16") in the upper right corner

of both images in Figure 8.3 provides a closer look at the enhancement of image
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Figure 8.4 The LCT derived flow direction (left) averaged over a 30 minute period
and the corresponding flow speed (right).

quality after SMI is applied. The result of SMI was a total of 240 reconstructions

(60 in each set). For each set the horizontal proper motions (flows) were determined

using local correlation tracking (LCT, November and Simon, 1988). LCT methods

use the change in contrast in consecutive images in the time series to determine the

direction and magnitude of the photospheric flow. Before the LCT algorithm was

applied, preprocessing was necessary. Alignment of the images was carried out by

matching the reconstructed images to a reference image in the same set. Differential

image motion was removed using a destretching algorithm and seeing effects and

solar oscillations were removed using a subsonic filter. After preprocessing LCT

techniques were applied to determine the proper motion of the granulation in the

reconstructed image sequences.

The results of LCT are shown in Figure 8.4. The flow direction and speed from

the reconstructed broad-band data in set I are shown on the left and right respec-

tively. In the flow speed map, horizontal speeds in excess of ti 1.5 km s -¹ are seen

scattered throughout the FOV. The color compass to the right of the flow direction

map indicates the direction of horizontal proper motions. Divergent regions in the

flow direction map are located by matching the sequence of colors in the compass,

taken in a clockwise direction, to a region in the map. Convergent flows can be



Figure 8.5 Locations of divergent and convergent regions superimposed on the (left)
flow direction and (right) speed map. White circles correspond to convergent regions
and the black circles to divergent.

identified by rotating the color compass counter-clockwise 180° and identifying the

resulting color sequence in the direction map. An iterative algorithm to determine

the locations of the divergent and convergent flows in the direction map was applied.

For each location a circle, whose radius is proportional to the degree that the conver-

gent or divergent flow is coherent, is prescribed outlining the region. In Figure 8.5

the locations of the convergent (white circles)and divergent (black circles) flows are

plotted over the direction and speed maps of Figure 8.4. In the direction map, circles

with large radii correspond to regions where there is a larger coherent convergent or

divergent flow. In the flow speed map, these same regions usually contain flows with

large horizontal flow speeds (~ 1.5 km s -¹ ).

For this study, a qualitative interpretation of the outlined flow regions is taken

and a more rigorous and quantitative study is left for future work. In the following

section the locations of the flow centers are used to investigate a possible relation

between upflow occurrence in the chromosphere with average photospheric proper

motion.
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8.3.2 Narrow-band Data

For each broad-band set, a set of narrow-band images was acquired. The FOV for

the spectroscopic observations is 85.3" x 85.3" corresponding to an image scale of

0.17" pixel- '. Referring to Table 8.3, image sets I and II were taken in Ha and III

and IV in Na D ² . VIM, like all 2-D imaging spectrometers, measures a spectrum

at every location in the FOV. For Ha, 80 wavelength points were scanned with a

spacing of 2.4 pm covering a range of ,--492.0 pm. A spacing of 2.15 pm was used for

Na D2, but 85 wavelength points were scanned resulting in a slightly smaller range

of ,--483.0 pm. Taking 5 images per wavelength point resulted in 400 (Ha) and 425

(Na D ² ) images per scan with a 30 second cadence to match the broad-band sequence.

The image with the highest contrast was selected from the five frames for each point

in the scan. Calibration images were acquired for both of the filters and were used

in the data reduction: Flat fields, dark frames, target frames used to correct for the

different scales and displacements between the narrow and broad-band images.

In all, the narrow-band observations consist of 275 scans of the same quiet Sun

region, 155 in Ha and 120 in Na D ² giving a total of more than 22,000 images. All

of the images in the set were run through an iterative data reduction program, and

were later sorted, selecting the scans that were acquired during the times of the best

seeing. The data reduction process began with subtraction of an average dark frame

from each image in the scan. From the fiat field scans, taken for each filter, the

gain table for the CCD at each wavelength point was obtained. The frame at each

wavelength point was then divided by its corresponding gain table. Image motion

was corrected and a common FOV was determined.

The tilt and shift of the line profile was determined and applied the data. The

final step in the data reduction process was to fit the average line profiles for Ha

and Na D2 to the associated line profiles from a the Kitt Peak FTS-Spectral-Atlas

Kurucz et al. (1984). The average flat field line profile is divided by a gaussian



0.0

6:

Figure 8.6 (left) Ha average line profile (red dash-dot). Solar atlas (black solid).
Gaussian approximation of the interference filter transmission profile (black dashed).
(right) Same plot for Na D².

approximation of the corresponding interference filter transmission profile and then

choose points in both the atlas and average profile that corresponded to the same

wavelength position. It is assumed that the intensity and wavelength difference

between the average profile and the atlas is the same for all points in the line and a

linear fit is used to independently determine their values. Figure 8.6 shows the atlas

profile (black line), average corrected profile (red dash-dotted line) and the gaussian

approximation to the filter transmission profile (black dash) for Hα (left) and Na D²

(right). The linear fit routine returns the x²-square value as a metric for determining

the goodness of fit. The standard deviations of the points in the average line profile

and the FPI wavelength variation discussed above from Krieg et al. (1999) are used

as errors for the linear fit routine. The resulting x ² values are 0.87 and 0.92 for Ha

and Na D² respectively.

With the approximate wavelength positions and intensity values determined,

the data can be scaled accordingly and calculations of the Doppler velocity can be

carried out with more certainty. A sample scan in Ha taken at 14:16 UT (corre-

sponding to the best speckle image in Figure 8.3) for eight wavelength positions in

steps of +0.2 A around line center is shown in Figure 8.7. As line center is approached
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Figure 8.7 Ha line scan taken at 14:16 UT in steps of 0.2 A around line center. 
The scan is nearly simultaneous with the best speckle image from that set. 
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Figure 8.8 NaD2 scan taken at 15:23 UT shown in steps of 0.2 A around line center. 
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from either the blue or red wing, the distribution of magnetic structures outlining

a supergranular cell becomes more evident. Of particular interest are the presence

of small scale features within the cell interior. The figure small scale features that

are seen in the blue wing (-0.6 A) throughout the cell interior are not present in the

corresponding position in the red wing (+0.6 A). These features are the locations of

upflow regions as characterized in Lee et al. (2000).

In Figure 8.8, a sample scan in Na D² is shown. Here the rich magnetic structure

of the upper chromosphere is not evident as the formation height for sodium spans

a lower range of altitudes. The width of the sodium absorption line is considerably

more narrow than that of the broad Ha line. At +0.4 A around line center, the

distinctive pattern of the granulation is clearly visible. It is not until +0.2 A around

line center that higher layers of the upper photosphere are seen. Small scale features

appear throughout the IN and network boundary. In the following section one such

region is identified along with it's corresponding line profile.

8.4 Results

In Lee et al. (2000) Ha upflow regions were identified using Dopplergrams. The

Dopplergrams were constructed by subtracting the Ha +0.6 A red line wing image

from the —0.6 A blue wing image. Upflow event features were identified as having

a rounded and or "clumpy" spatial profile thus distinguishing them from the more

elongated mottles and fibrils. Along with having a distinguishing spatial profile, Lee

et al. (2000) found that upflow event features also have a characteristic blueshifted

spectral profile that distinguishes them from mottles.

Two types of profiles were found for upflow features both at the network bound-

aries and within the IN. The first type is called type I upflow events, and they are

found to have line profiles that are broadened in the blue wing of the line profile but

remain fixed in the red wing when compared to the average quiet Sun profile. Type
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I events were primarily found at the network boundaries. The second type of upflow

event is called type II or dark grains. Dark grains are primarily found within the IN.

Type II events show emission in the red, appearing to be shifted towards the blue

when compared to the average quiet Sun line profile.

Identifying upflow regions was performed in a similar fashion to the one pre-

sented in Lee et al. (2000). However, a method for constructing Dopplergrams dif-

ferent than the one presented in Lee et al. (2000) is used. Two different techniques are

used to derive the Dopplergrams used for this study. The first is a line bisector tech-

nique that calculates the bisector of the line profile at an intensity threshold defined

by I = 10/ exp(1), where 10 represents the continuum intensity of the quiet Sun. The

Doppler map derived using this technique reflects contributions from all points in

the line profile and is heavily influenced by points in the line wing that represent

lower altitudes. In this study a Doppler map of this kind is called a Doppler line

wing map, and is distinguished from the second type of Doppler map, the Doppler

core map. The Doppler core map consists of line core velocities that are derived by

making a parabola fit to spectral points approximately +10 pm (for Ha) around the

line center.

Figure 8.9 shows an example of two Doppler line wing maps from a scan

acquired at 14:50:30 UT in Ha (left) and at 15:25:01 UT in Na D ² (right). For

both maps, positive shifts correspond to downflows (yellow to white) and negative

to upflows (blue to black). One can see that regions of strong downflows outline

the supergranular cell boundary, with the intermittent appearance of strong upflow

regions (this most evident in the Ha Doppler line wing map). In Na D² Doppler line

wing maps, the situation is presented in much the same way, strong downflow regions

roughly outline the network boundary, with the presence of a few strong upflow

regions persisting between the downflows. A granular pattern strongly presents itself

in the Na D² Doppler line wing map which reflects the line wing contribution to the
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Figure 8.9 (left) Ha line of sight Doppler velocity map derived from reduced data
acquired at 14:15:30 UT. Negative values correspond to upflows and positive to
downflows. The maximum and minimum Doppler velocities are -7.47 km s -¹

and ,--z-2, +13 km s-¹ , respectively. (right) Na D ² line of sight velocity map from a
scan acquired at 15:25:02 UT. The maximum and minimum Doppler velocities are
,--:-,' -2.0 km s -¹ and +2.5 km s-¹ , respectively.

Doppler velocity. For the Ha Doppler map in Figure 8.9, the maximum upflow and

downflow velocities recorded are R-2, -7.47 km s -¹ and ≈ +13 km 5-¹ , respectively.

Na D² shows Doppler velocities that are smaller than the ones in Ha, with maximum

upflow and downflow velocities ;:-..,' -2.0 km s -¹ and ,--:-_,' +2.5 km s -¹ , respectively.

This is not surprising given that Doppler shift is proportional to m -11² , where m

is the atomic mass. One would expect that sodium, with an atomic mass ';:- .,21

times heavier than that of hydrogen, would have a less broad Doppler profile and

hence smaller Doppler velocities. The Doppler velocities quoted above came from

features that were found close to the IN-facing side of the network boundary. Upflow

structures are also found inside the IN in both Ha and Na D².

Two such examples are given in Figure 8.10 and Figure 8.11. In Figure 8.10

the black circled region at the center of the Ha Doppler line wing map (left) and

its corresponding line profile (right) are shown. The black asterisk line corresponds

to the profile of the absorption feature and the solid black line the average quiet

Sun line profile. A Doppler shift of ,=--- -6 km s-¹ was measured for this feature.
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Figure 8.10 (left) Hα Doppler line wing map with upflow feature (black circle) and
the corresponding (right) spectral profile (black asterisk) plotted over the average
profile (black line).

Figure 8.11 (left) Na D² Doppler line wing map with upfiow feature (black circle)
and the corresponding (right) spectral profile (black asterisk) plotted over the average
profile (black line).
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A blue-shifted profile of this kind is indicative of the type II upflow event or dark

grain described above. As stated above, dark grains are primarily found within the

IN. A type I upflow profile is shown in the right hand panel of Figure 8.11. This

feature (black circle), was found close to the center of the IN in the Na D2 Doppler

line wing map. This feature has a Doppler velocity of ti -2 km s -¹ and shows a

characteristic type I blue wing broadening and a fixed red wing showing a slight

absorption compared to the average profile.

In all, five upflow features were identified in Ha Doppler line wing maps for a

1.5 minute time-series (14:12:01-14:13:37 UT) from set Ia. Four of the five upflow

features could be classified as type II upflows and were located both within and in

close proximity to the IN boundary. The remaining feature was of type I and was

located near the IN boundary. The average Doppler velocity of the five features was

ti -5.5 + 1.2 km s-¹ . Five features were also identified in Na D² ) from a 4 minute

time-series (15:23:12-15:27:28 UT) consisting of scans acquired in set III. For the

five upflow features identified in the Na D² Doppler line wing map, all were of type

I and were located both within and close to the IN boundary. The average Doppler

velocity found for the five Na D2 features was -2.3 + 0.3 km s-¹ . It is important

to note that measurements, in Na D², of the line-of-sight (LOS) Doppler velocities of

granular motion presented in Krieg et al. (1999) are on the order of -2 km s-¹ .

With this in mind it is difficult to say that the features that are identified as upflows

in the Na D² Doppler line wing maps are indeed upflow features of the type presented

in Lee et al. (2000).

However, it is also noted that granular lifetimes are on the order of ti 6 min Stix

(1989), whereas upflow events have lifetimes on the order of 1-1.5 min. By examining

both the spectral and temporal characteristics of upflow features observed in Na D²

Doppler line wing maps, a more definitive conclusion could be reached regarding the

ability to distinguish nascent upflow events from granular motion. A rigorous study
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Figure 8.12 Na D² line of sight Doppler core velocity map from a scan acquired at
15:27:28 UT. The maximum and minimum Doppler velocities are 	 km s-¹ and

km s-¹ , respectively.

of the temporal evolution of upflow events observed in Na D² is left for future work

and the focus in this chapter is primarily on the identification of upflow events.

One possible solution to the problem of distinguishing between upflow events

observed in Doppler maps and granular upflows is to look higher in the atmosphere

by looking at velocity contributions closer to the line core. The study of granular

velocities presented in Krieg et al. (1999) gives a geometrical height of formation

for the Doppler velocity signal of 50-200 km. The Dopplergrams presented in Krieg

et al. (1999) were constructed by combining —500 mA and —600 mA blue wing

images, with +500 mA and +600 mA red wing images. The Na D ² line core has

a geometrical height of formation between 200 km and 800 km Uitenbroek (2004).

Attention can now be turned toward the Doppler core maps in a search for upflow

signatures. Figure 8.12 shows a Doppler core map derived from a scan acquired

at 15:27:28 UT. It is evident that the signature from the granulation is not nearly

as pronounced as it is in the Doppler line wing maps. For the Doppler core maps
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Figure 8.13 (left) Na D ² Doppler core map from a scan acquired at 15:27:28 UT
with an upflow feature (white circle) and the corresponding (right) spectral profile
(black solid line) plotted over the average profile ( dark grey dashed line).

five features are identified (different than the ones identified in the Doppler line

wing maps) all appearing in the same 4 minute time-series from 15:23:12-15:27:28

UT. An example of one such feature and the corresponding line profile is shown in

Figure 8.13. The profile for this feature is characteristic of a type I upflow event

however, there is a small amount of absorption evident in the red wing. The LOS

Doppler core velocity is measured to be c -3.2 km s-¹ . The average velocity of the

five features is ti -2.8 ± 0.4 km s -1 , which is slightly larger than the average velocity

values recorded in the Doppler line wing maps.

Along with the spectral characteristics, the position of upflows with respect to

the divergent and convergent centers derived from LCT is presented. The two step

reconnection model given in Chae (1999) suggests that upflow events exist at points

where slow magnetic reconnection in and at the network boundaries occur. This has

been further verified by studies showing the coincidence between flux cancelation

at the photosphere and UV transition region jets. Without magnetic field data it is

difficult to establish a spatial relationship between upflows and photospheric features.

However, an attempt is made here by examining the co-alignment of Na D² and Ha
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Doppler maps with the underlying flow direction. Before aligning the two fields, the

narrow-band images had to be scaled and shifted with respect to the broad-band

images. Using the target frames the necessary scaling factor and pixel shift between

the CCD1 and CCD2 were determined.

The corrections were applied and the result is shown in Figure 8.14. In both the

left and right panels of Figure 8.14, black circles with black cross hairs correspond

to divergent flows and black circles with white cross hairs correspond to convergent

flows. Diverging motions corresponding to emerging bipoles, seem to preferentially

occur in the cell interior. It is difficult to say whether or not positive Doppler shifts

are related to either divergent or convergent flows or if negative Doppler shifts have

a preferential underlying flow direction at least in Ha. In Na D² however there seems

to be a correspondence between downflows with convergent regions and upflows with

divergent regions. Convergent regions seem to coincide with the location of downflows

seen in the Doppler map. Since Na D2 forms in the middle and upper photosphere at

heights of 50-200 km it is relatively safe to assume that convergent horizontal flows

are centered on the intergranular lanes which show up as downflows in the Na D²

Doppler map. Upflows in the Doppler map seem to be in agreement with the location

of divergent horizontal flows.

Another characteristic of upflows are their lifetimes. Figure 8.15 and Figure 8.16

show a time sequence of Doppler maps for Ha and Na D² respectively. Upflows are

shown in red and black, and downflows in yellow and white. The Ha time sequence

of Doppler maps presented in Figure 8.15 was derived from subset Ia where the

narrow-band scans were acquired with a 12 s cadence. The figure shows a 1.5 min

time series from 14:12:01-14:13:37 UT. Let it be clear that no attempts are made

here to determine the precise lifetimes of upflows but instead these figures are used

as an illustration to show the dynamical nature of these features as well as make

a statement about the how the lifetimes might be used as a distinguishing charac-
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Figure 8.14 (left) Scaled Ha Doppler velocity map with position of divergent (black
circles black crosshairs) and convergent (black circles white crosshairs) co-aligned.
(right) Scaled Na D² Doppler velocity map showing the same.

teristic. Several strong upflow regions are visible both on and within the network

boundaries. Features that are located along the network boundaries appear larger

in size and have lifetimes that are longer than the smaller size shorter lifetime IN

features. The time sequence of Na D² Doppler maps presented in Figure 8.16 were

derived from the reduced data in set III. The figure shows a 4 minute time sequence

from 15:23:12-15:27:28 UT, acquired with a 30 s cadence. Here a picture similar to

the one in Figure 8.15 is seen. With mean granulation lifetimes on the order of 6

minutes and the frequent appearance and disappearance of upflows in the sodium

Doppler map, it is quite possible that the upflows that are observed to occur in

Na D² are associated with the same magnetic reconnection events that are proposed

to be the source of Ha upflow events.

8.5 Conclusion

In this chapter the work carried out by Chae et al. (1998) and Lee et al. (2000)

is expanded upon by using broad-band 600 nm and narrow-band Na D² 588.99 nm

and Ha 656.28 nm data to study the behavior and characteristics of upflow events at

different heights in the solar atmosphere. In the context of the two-step reconnection
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Figure 8.15 Time sequence (14:12:01-14:13:37 UT) of Ha Doppler velocity maps.
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Figure 8.16 Time sequence (15:23:12-15:27:28 UT) of Na D² Doppler velocity maps.
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model presented in Chae (1999), of particular interest is the question of where and

how upflow events begin and evolve.

To begin to answer this, low chromosphere and photosphere observations using

Na D² data are used to search for the early stages of upflow development. The line

wing and line core Doppler velocities in Na D² are found to be approximately one half

the velocities measured in Ha . An average Doppler line wing velocity for five upflow

features in Ha of —5.5 ± 1.2 km s-¹ is found. This is in line with the Doppler

velocities presented in Lee et al. (2000). In Na D ² , using Doppler line wing maps

and Doppler core maps upflows with velocities on the order of ti —2.3 ± 0.3 km s -¹

and —2.8 ± 0.4 km s -¹ are observed for line wing and line core Doppler velocities

respectively. The smaller velocities observed for upflow features in Na D² could be

the result of the sodium atom's larger atomic mass or, in the context of the two-step

reconnection model, a look at the early stages of the rising magnetic island as it

passes through the denser layers of the photosphere and lower chromosphere.

To make any sort of conclusive statements about the nascent stages of upflow

evolution, further analysis is necessary. A sample size of five features is not enough

to generate reliable statistics and efforts are currently underway to automate the

identification of upflow features in both Doppler line wing and core maps for all

data sets. With the automated identification of features, careful tracking of the

temporal evolution of these events will be possible in both Na D2 and Ha. This

will be particularly useful in Na D ² where the velocity signal from the granulation

is dominant, and knowledge of the feature lifetimes would allow one to distinguish

upflows from granulation.



CHAPTER 9

SUMMARY AND CLOSING REMARKS

From its nuclear core to the outer reaches of the heliosphere, the Sun supplies the

scientific community with a steady stream of both fundamental and complex ques-

tions related to all areas of physics. From the perspective of the modern observer,

the enormous variety of solar instrumentation that exists today is a reflection of

the successful attempts that have been made to provide answers to some of these

questions. In this thesis the emphasis is on the active role that ground-based solar

observatories play by providing what are some of the necessary components needed

to make high-resolution observations of the Sun.

The first component discussed is the choice of a proper location for the obser-

vatory. Using four years of meteorological and seeing data acquired during the site

survey for the 4 m Advanced Technology Solar Telescope (ATST), provide a sta-

tistical analysis of the data with particular interest in the seeing characteristics at

a mountain lake-site observatory, its relation to the local environment and climate,

and the implications for the 1.6-meter New Solar Telescope (NST) currently in oper-

ation at Big Bear Solar Observatory (BBSO). Prevailing westerly winds with average

speeds of 6 m s' will provide the necessary cooling needed to maintain tempera-

tures and remove thermal gradients inside the observatory dome. Analysis of the

seeing conditions show excellent windows for high resolution observations from sun-

rise to sunset making BBSO an ideal site for both synoptic and campaign style solar

observations.

Following the detailed analysis of the site and seeing characteristics, a brief

overview is given of the NST in an effort to seamlessly segue into the preliminary

design of the NST THermal Control System (THCS). The open structure design of

166
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NST requires that temperatures inside the dome be in equilibrium with the outside

so as to minimize the effects of convective currents around the telescope structure.

Measurement of the temperature inside the dome using 16 thermal probes confirmed

the existence of a strong thermal gradient on the order of 5° Celsius inside the dome.

Passive measures are used to flush the air in the dome by using 14 active vents

housing louvers that open and close independently of one another to regulate and

direct the passage of air through the dome. Temperature tests were carried out while

simultaneously opening and closing the louvers, showing that the louvers do affect

the internal dome temperature. However, further experiments with the telescope

present and operating under normal observing conditions are necessary to arrive at

an optimum algorithm for opening and closing the louvers.

The NST will benefit from a host of new and hold post focus instrumenta-

tion. One of instruments is a two-dimensional imaging spectro-polarimeter called

the Visible-light Imaging Magnetograph (VIM). VIM will provide high temporal and

spatial resolution two-dimensional spectro-polarimetric measurements of the Sun,

making the study of solar activity more complete. In Chapter 7 VIM is summarized

and a calibration method for the set of two Liquid Crystals (LC) used for VIM'S

operation as a spectropolarimeter is provided. In July 2007, using the calibrated

polarization module, the first Stokes-V Magnetograms using VIM were obtained.

In Chapter 8 near-simultaneous narrow-band and broad-band observations are

presented of a quiet Sun region at disk center using VIM and a speckle camera.

Data sets of this type provide a wealth of information pertaining to the structure,

dynamics, and coupling of the different layers of the Solar atmosphere. The purpose

of this chapter, keeping within the context of this thesis, is to provide the reader

with an application of high-resolution observations of the Sun using upflow events

as an example. Using line wing Doppler maps, upflow events with velocities on the

order of ti —8 km s-¹ in Ha, and ti —2 km s -¹ in Na D² are found. The line profiles
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associated with upflows seen in Ha are characteristic of both type I and type II (dark

grain) upflow events, while the upflows observed in Na D² are characteristic only of

type I. This the first step of an in-depth study of upflow features at lower geometric

heights in the solar atmosphere.
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